Preferences-Based Choice Prediction in Evolutionary Multi-objective Optimization

  • Manish Aggarwal
  • Justin Heinermann
  • Stefan Oehmcke
  • Oliver Kramer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

Evolutionary multi-objective algorithms (EMOAs) of the type of NSGA-2 approximate the Pareto-front, after which a decision-maker (DM) is confounded with the primary task of selecting the best solution amongst all the equally good solutions on the Pareto-front. In this paper, we complement the popular NSGA-2 EMOA by posteriori identifying a DM’s best solution among the candidate solutions on the Pareto-front, generated through NSGA-2. To this end, we employ a preference-based learning approach to learn an abstract ideal reference point of the DM on the multi-objective space, which reflects the compromises the DM makes against a set of conflicting objectives. The solution that is closest to this reference-point is then predicted as the DM’s best solution. The pairwise comparisons of the candidate solutions provides the training information for our learning model. The experimental results on ZDT1 dataset shows that the proposed approach is not only intuitive, but also easy to apply, and robust to inconsistencies in the DM’s preference statements.

Keywords

Multi-objective optimization NSGA-2 Preference-based learning Solution selection 

Notes

Acknowledgments

This work was carried out at Computational Intelligence Group, Department of Computing Science, University of Oldenburg, Germany with the support of German Academic Exchange Service (DAAD) to Manish Aggarwal as a visiting scientist and university academician.

References

  1. 1.
    Agarwal, M., Fallah Tehrani, A., Hullermeier, E.: Preference-based learning of ideal solutions in TOPSIS-like decision models. J. Multi-Criteria Decis. Anal. 22(3–4), 175–183 (2015)CrossRefGoogle Scholar
  2. 2.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  3. 3.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  4. 4.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Friedrich, T., Kroeger, T., Neumann, F.: Weighted preferences in evolutionary multi-objective optimization. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 291–300. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25832-9_30CrossRefGoogle Scholar
  6. 6.
    Friedrich, T., Kroeger, T., Neumann, F.: Weighted preferences in evolutionary multi-objective optimization. Int. J. Mach. Learn. Cybern. 4(2), 139–148 (2013)CrossRefGoogle Scholar
  7. 7.
    Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 62(1), 101–129 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Branke, J., Greco, S., Slowinski, R., Zielniewicz, P.: Learning value functions in interactive evolutionary multiobjective optimization. Trans. Evol. Comput. 19(1), 88–102 (2015)CrossRefMATHGoogle Scholar
  9. 9.
    Jaszkiewic, A.: Interactive multiobjective optimization with the pareto memetic algorithm. Found. Comput. Decis. Sci. 32(1), 15–32 (2004)MathSciNetGoogle Scholar
  10. 10.
    Chaudhari, P., Dharaskar, R., Thakare, V.M.: Computing the most significant solution from pareto front obtained in multi-objective evolutionary. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 1(4), 1–6 (2010)Google Scholar
  11. 11.
    Zio, E., Bazzo, R.: A comparison of methods for selecting preferred solutions in multiobjective decision making. In: Kahraman, C. (ed.) Computational Intelligence Systems in Industrial Engineering. Atlantis Computational Intelligence Systems, vol. 6, pp. 23–43. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika 39(3/4), 324 (1952)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manish Aggarwal
    • 1
  • Justin Heinermann
    • 2
  • Stefan Oehmcke
    • 2
  • Oliver Kramer
    • 2
  1. 1.Department of Information SystemsIndian Institute of Management AhmedabadAhmedabadIndia
  2. 2.Computational Intelligence Group, Department of Computing ScienceUniversity of OldenburgOldenburgGermany

Personalised recommendations