The Two Regimes of Neutral Evolution: Localization on Hubs and Delocalized Diffusion

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

It has been argued that much of evolution takes place in the absence of fitness gradients. Such periods of evolution can be analysed by examining the mutational network formed by sequences of equal fitness, that is the neutral network. It has been demonstrated that, in large populations under a high mutation rate, the population distribution over the neutral network and average mutational robustness are given by the principle eigenvector and eigenvalue, respectively, of the network’s adjacency matrix. However, little progress has been made towards understanding the manner in which the topology of the neutral network influences the resulting population distribution and robustness. In this work, we build on recent results from spectral graph theory and utilize numerical methods to demonstrate that there exist two regimes of behaviour: convergence on hubs and diffusion over the network. We also derive approximations for the population’s behaviour under these regimes. This challenges the widespread assumption that neutral evolution always leads to exploration of the neutral network and elucidates the conditions which result in the evolution of robust organisms.

References

  1. 1.
    Aguirre, J., Buldú, J.M., Manrubia, S.C.: Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability. Phys. Rev. E 80(6), 066112 (2009)CrossRefGoogle Scholar
  2. 2.
    Aguirre, J., Buldú, J.M., Stich, M., Manrubia, S.C.: Topological structure of the space of phenotypes: the case of RNA neutral networks. PLoS One 6(10), e26324 (2011)CrossRefGoogle Scholar
  3. 3.
    Bloom, J.D., Lu, Z., Chen, D., Raval, A., Venturelli, O.S., Arnold, F.H.: Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol. 5(1), 1 (2007)CrossRefGoogle Scholar
  4. 4.
    Bornberg-Bauer, E.: How are model protein structures distributed in sequence space? Biophys. J. 73(5), 2393 (1997)CrossRefGoogle Scholar
  5. 5.
    Bornberg-Bauer, E., Chan, H.S.: Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. 96(19), 10689–10694 (1999)CrossRefGoogle Scholar
  6. 6.
    Chung, F., Lu, L., Vu, V.: Spectra of random graphs with given expected degrees. Proc. Natl. Acad. Sci. 100(11), 6313–6318 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Currin, A., Swainston, N., Day, P.J., Kell, D.B.: Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44(5), 1172–1239 (2015)CrossRefGoogle Scholar
  8. 8.
    Devert, A.: When and why development is needed: generative and developmental systems. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1843–1844. ACM (2009)Google Scholar
  9. 9.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275 (2008)CrossRefGoogle Scholar
  10. 10.
    Draper, D.: The RNA-folding problem. Acc. Chem. Res. 25(4), 201–207 (1992)CrossRefGoogle Scholar
  11. 11.
    Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  12. 12.
    Erdős, P., Renyi, A.: On random graphs i. Publ. Math. Debr. 6, 290–297 (1959)MATHGoogle Scholar
  13. 13.
    Feld, S.: Why your friends have more friends than you do. Am. J. Sociol. 96(6), 1464–1477 (1991)CrossRefGoogle Scholar
  14. 14.
    Gjuvsland, A., Vik, J., Beard, D., Hunter, P., Omholt, S.: Bridging the genotype-phenotype gap: what does it take? J. Physiol. 591(8), 2055–2066 (2013)CrossRefGoogle Scholar
  15. 15.
    Goltsev, A.V., Dorogovtsev, S.N., Oliveira, J., Mendes, J.F.: Localization and spreading of diseases in complex networks. Phys. Rev. Lett. 109(12), 128702 (2012)CrossRefGoogle Scholar
  16. 16.
    Jäckel, C., Hilvert, D.: Biocatalysts by evolution. Curr. Opin. Biotechnol. 21(6), 753–759 (2010)CrossRefGoogle Scholar
  17. 17.
    Kaltenbach, M., Tokuriki, N.: Generation of effective libraries by neutral drift. Dir. Evol. Libr. Creat.: Methods Protoc. 1179, 69–81 (2014)Google Scholar
  18. 18.
    Kimura, M., et al.: Evolutionary rate at the molecular level. Nature 217(5129), 624–626 (1968)CrossRefGoogle Scholar
  19. 19.
    King, J.L., Jukes, T.H.: Non-Darwinian evolution. Science 164(3881), 788–798 (1969)CrossRefGoogle Scholar
  20. 20.
    Martin, T., Zhang, X., Newman, M.: Localization and centrality in networks. Phys. Rev. E 90(5), 052808 (2014)CrossRefGoogle Scholar
  21. 21.
    Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406–414 (2010)CrossRefGoogle Scholar
  22. 22.
    Mayo, M., Abdelzaher, A., Ghosh, P.: Long-range degree correlations in complex networks. Comput. Soc. Netw. 2(1), 1 (2015)CrossRefGoogle Scholar
  23. 23.
    Nei, M.: Selectionism and neutralism in molecular evolution. Mol. Biol. Evol. 22(12), 2318–2342 (2005)CrossRefGoogle Scholar
  24. 24.
    Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)CrossRefGoogle Scholar
  25. 25.
    Nilsson, N.J.: The Quest for Artificial Intelligence. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  26. 26.
    van Nimwegen, E.: Influenza escapes immunity along neutral networks. Science 314(5807), 1884–1886 (2006)CrossRefGoogle Scholar
  27. 27.
    Noirel, J., Simonson, T.: Neutral evolution of proteins: the superfunnel in sequence space and its relation to mutational robustness. J. Chem. Phys. 129(18), 185104 (2008)CrossRefGoogle Scholar
  28. 28.
    Parter, M., Kashtan, N., Alon, U.: Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comput. Biol. 4(11), e1000206 (2008)CrossRefGoogle Scholar
  29. 29.
    Pastor-Satorras, R., Castellano, C.: Distinct types of eigenvector localization in networks. Sci. Rep. 6, 18847 (2016)CrossRefGoogle Scholar
  30. 30.
    Pigliucci, M.: Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 365(1540), 557–566 (2010)CrossRefGoogle Scholar
  31. 31.
    Reeves, T., Farr, R., Blundell, J., Gallagher, A., Fink, T.: Eigenvalues of neutral networks: interpolating between hypercubes. Discret. Math. 339(4), 1283–1290 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Reidys, C., Stadler, P.F., Schuster, P.: Generic properties of combinatory maps: neutral networks of RNA secondary structures. Bull. Math. Biol. 59(2), 339–397 (1997)CrossRefMATHGoogle Scholar
  33. 33.
    Restrepo, J.G., Ott, E., Hunt, B.R.: Approximating the largest eigenvalue of network adjacency matrices. Phys. Rev. E 76(5), 056119 (2007)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)CrossRefGoogle Scholar
  35. 35.
    Taverna, D.M., Goldstein, R.A.: Why are proteins so robust to site mutations? J. Mol. Biol. 315(3), 479–484 (2002)CrossRefGoogle Scholar
  36. 36.
    Van Mieghem, P., Wang, H., Ge, X., Tang, S., Kuipers, F.: Influence of assortativity and degree-preserving rewiring on the spectra of networks. Eur. Phys. J. B 76(4), 643–652 (2010)CrossRefMATHGoogle Scholar
  37. 37.
    Van Nimwegen, E., Crutchfield, J., Huynen, M.: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. 96(17), 9716–9720 (1999)CrossRefGoogle Scholar
  38. 38.
    Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. Lond. B: Biol. Sci. 275(1630), 91–100 (2008)CrossRefGoogle Scholar
  39. 39.
    Wagner, A.: The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems. OUP, Oxford (2011)CrossRefGoogle Scholar
  40. 40.
    Wagner, A.: A genotype network reveals homoplastic cycles of convergent evolution in influenza a (H3N2) haemagglutinin. Proc. R. Soc. Lond. B: Biol. Sci. 281(1786), 20132763 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CAIR, CSIR MerakaPretoriaSouth Africa
  2. 2.Department of Computer ScienceUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations