Abstract
As the pervasiveness of social networks increases, new NP-hard related problems become interesting for the optimization community. The objective of influence maximization is to contact the largest possible number of nodes in a network, starting from a small set of seed nodes, and assuming a model for information propagation. This problem is of utmost practical importance for applications ranging from social studies to marketing. The influence maximization problem is typically formulated assuming that the number of the seed nodes is a parameter. Differently, in this paper, we choose to formulate it in a multi-objective fashion, considering the minimization of the number of seed nodes among the goals, and we tackle it with an evolutionary approach. As a result, we are able to identify sets of seed nodes of different size that spread influence the best, providing factual data to trade-off costs with quality of the result. The methodology is tested on two real-world case studies, using two different influence propagation models, and compared against state-of-the-art heuristic algorithms. The results show that the proposed approach is almost always able to outperform the heuristics.
Keywords
- Influence maximization
- Social network
- Multi-objective evolutionary algorithms
This is a preview of subscription content, access via your institution.
References
Belluz, J., Gaudesi, M., Squillero, G., Tonda, A.: Operator selection using improved dynamic multi-armed bandit. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1311–1317. ACM (2015)
Bucur, D., Iacca, G.: Influence maximization in social networks with genetic algorithms. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 379–392. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31204-0_25
Bucur, D., Iacca, G., Squillero, G., Tonda, A.: The impact of topology on energy consumption for collection tree protocols: an experimental assessment through evolutionary computation. Appl. Soft Comput. 16, 210–222 (2014)
Bucur, D., Iacca, G., Squillero, G., Tonda, A.: The tradeoffs between data delivery ratio and energy costs in wireless sensor networks: a multi-objective evolutionary framework for protocol analysis. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1071–1078. ACM (2014)
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, NY, USA, pp. 199–208. ACM, New York (2009)
Coello, C.C., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, Heidelberg (2002)
Corno, F., Sanchez, E., Squillero, G.: Evolving assembly programs: how games help microprocessor validation. IEEE Trans. Evol. Computat. 9(6), 695–706. http://dx.doi.org/10.1109/TEVC.2005.856207
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Gandini, S., Ruzzarin, W., Sanchez, E., Squillero, G., Tonda, A.: A framework for automated detection of power-related software errors in industrial verification processes. J. Electron. Test. 26(6), 689–697 (2010)
Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)
Jiang, Q., Song, G., Cong, G., Wang, Y., Si, W., Xie, K.: Simulated annealing based influence maximization in social networks. In: Burgard, W., Roth, D. (eds.) AAAI. AAAI Press (2011)
Kempe, D., Kleinberg, J.: Éva Tardos: maximizing the spread of influence through a social network. Theor. Comput. 11(4), 105–147 (2015)
Kim, K., McKay, R.B., Moon, B.R.: Multiobjective evolutionary algorithms for dynamic social network clustering. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, NY, USA, pp. 1179–1186. ACM, New York (2010)
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection (2016). http://snap.stanford.edu/data
Liu, C., Liu, J., Jiang, Z.: A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE Trans. Cybern. 44(12), 2274–2287 (2014)
Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms. Springer, Heidelberg (2012)
Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)
Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39718-2_23
Squillero, G.: MicroGP - an evolutionary assembly program generator. Genet. Program. Evol. Mach. 6(3), 247–263 (2005)
Tonda, A.P., Lutton, E., Reuillon, R., Squillero, G., Wuillemin, P.-H.: Bayesian network structure learning from limited datasets through graph evolution. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 254–265. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29139-5_22
Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade model in large-scale social networks. Data Mining Knowl. Discov. 25(3), 545–576 (2012)
Zeng, Y., Liu, J.: Community detection from signed social networks using a multi-objective evolutionary algorithm. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. PALO, vol. 1, pp. 259–270. Springer, Heidelberg (2015). doi:10.1007/978-3-319-13359-1_21
Acknowledgment
Andrea Marcelli Ph.D. program at Politecnico di Torino is supported by a fellowship from TIM (Telecom Italia Group).
This article is based upon work from COST Action CA15140 ‘Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO)’ supported by COST (European Cooperation in Science and Technology).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bucur, D., Iacca, G., Marcelli, A., Squillero, G., Tonda, A. (2017). Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-55849-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55848-6
Online ISBN: 978-3-319-55849-3
eBook Packages: Computer ScienceComputer Science (R0)