Advertisement

Analysis of Average Communicability in Complex Networks

  • Qi Bu
  • Kwok Yip Szeto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

The average communicability of a complex network is an important measure of the efficiency of information exchange in the entire network. The optimization of average communicability is a significant problem in network design for various applications in science and engineering. Since the search for the topology that achieves the highest average communicability is a very difficult problem due to the enormous size of the solution space, the genetic algorithm is a good choice for search. From numerical simulation, we discover a positive correlation between the variance of the degree distribution with the average communicability of the network. This correlation is then proven mathematically, with applications to the comparison for the average communicability of two networks with the same number of nodes and links using the largest eigenvalues of their adjacency matrices.

Keywords

Genetic algorithm Complex networks Communicability Eigenvalue and eigenvector Rewiring 

References

  1. 1.
    Scott, J.: Social Network Analysis. Sage, New York (2012)Google Scholar
  2. 2.
    Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl. Acad. Sci. 105(41), 15649–15653 (2008)CrossRefGoogle Scholar
  3. 3.
    Dunne, J.A., Williams, R.J., Martinez, N.D.: Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. 99(20), 12917–12922 (2002)CrossRefGoogle Scholar
  4. 4.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  5. 5.
    Cai, W., Chen, L., Ghanbarnejad, F., Grassberger, P.: Avalanche outbreaks emerging in cooperative contagions. Nat. Phys. 11(11), 936–940 (2015)CrossRefGoogle Scholar
  6. 6.
    Rieser, M., Nagel, K.: Network breakdown ‘at the edge of chaos’ in multi-agent traffic simulations. Eur. Phys. J. B 63(3), 321–327 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Calvert, K.L., Doar, M.B., Zegura, E.W.: Modeling internet topology. Commun. Mag. IEEE 35(6), 160–163 (1997)CrossRefGoogle Scholar
  8. 8.
    Aiiqullah, M.M., Rao, S.S.: Reliability optimization of communication networks using simulated annealing. Microelectron. Reliab. 33, 1303–1319 (1993)CrossRefGoogle Scholar
  9. 9.
    Jan, R.-H., Hwang, F.-J., Chen, S.-T.: Topological optimization of a communication network subject to a reliability constraint. IEEE Trans. Reliab. 42, 63–70 (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pierre, S., Hyppolite, M.-A., Bourjolly, J.-M., Dioume, O.: Topological design of computer communication networks using simulated annealing. Eng. Appl. Artif. Intell. 8, 61–69 (1995)CrossRefGoogle Scholar
  11. 11.
    Aggarwal, K.K., Chopra, Y.C., Bajwa, J.S.: Topological layout of links for optimizing the overall reliability in a computer communication system. Microelectron. Reliab. 22, 347–351 (1982)CrossRefGoogle Scholar
  12. 12.
    Fetterolf, P.C., Anandalingam, G.: Optimal design of LAN-WAN internetworks: an approach using simulated annealing. Anna. Oper. Res. 36, 275–298 (1992)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wilkov, R.S.: Design of computer networks based on a new reliability measure. In: Fox, I. (ed.) Proceedings of the Symposium on Computer-Communications Networks and Teletraffic, pp. 371–384. Polytechnic Institute of Brooklyn, Brooklyn (1972)Google Scholar
  14. 14.
    Walters, G.A., Smith, D.K.: Evolutionary design algorithm for optimal layout of tree networks. Eng. Optim. 24, 261–281 (1995)CrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, CA (1979)zbMATHGoogle Scholar
  16. 16.
    Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    da Fontoura Costa, L., Travieso Jr., G., Rodrigues, O.N., Villas Boas, P.R., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60, 329–412 (2011)CrossRefGoogle Scholar
  18. 18.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Estrada, E., Hatano, N.: Communicability in complex networks. Phys. Rev. E 77(3), 036111 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Estrada, E., Hatano, N., Benzi, M.: The physics of communicability in complex networks. Phys. Rep. 514(3), 89–119 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jordán, F., Scheuring, I.: Searching for keystones in ecological networks. Oikos 99, 607–612 (2002)CrossRefGoogle Scholar
  22. 22.
    Zotenko, E., Mestre, J., O’Leary, D.P., Przytycka, T.M.: Why do hubs in yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput. Biol. 4, e1000140 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Costa, L., Rodrigues, F.: What is there between any two nodes in a complex network? Arxiv.org (2008). http://arxiv.org/abs/0801.4068. Accessed 16 Mar 2016
  24. 24.
    Amaral, L., Ottino, J.: Complex networks. Eur. Phys. J. B Condens. Matter 38(2), 147–162 (2004)Google Scholar
  25. 25.
    Newman, M., Strogatz, S., Watts, D.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)CrossRefGoogle Scholar
  26. 26.
    Wang, Z., Szeto, K.Y.: Comparing the reliability of networks by spectral analysis. Eur. Phys. J. B 87, 234 (2014). doi: 10.1140/epjb/e2014-50498-0CrossRefGoogle Scholar
  27. 27.
    Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  28. 28.
    Biggs, N.: Algebraic Graph Theory. Cambridge University Press, London (1974)CrossRefzbMATHGoogle Scholar
  29. 29.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsHong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations