A general sparse modeling approach for regression problems involving functional data

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


This presentation aims to introduce an approach for dealing with sparse regression models when functional variables are involved in the statistical sample. The idea is not to restrict to any specific variable selection procedure, but rather to present a two-stage methodology allowing to adapt efficiently any multivariate procedure to the functional framework. These ideas can be applied to any kind of functional regression models, including linear, semi-parametric or non-parametric models.


Variable Selection Projection Pursuit Functional Data Analysis Variable Selection Procedure Oracle Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aneiros, G., Ferraty, F., Vieu, P.: Variable selection in partial linear regression with functional covariate. Statistics 49, 1322–1347 (2015)Google Scholar
  2. 2.
    Aneiros, G., Vieu, P.: Variable selection in infinite-dimensional problems. Stat. Probab. Lett. 94, 12–20 (2014)Google Scholar
  3. 3.
    Aneiros, G., Vieu, P.: Partial linear modelling with multi-functional covariates. Comput. Stat. 30, 647–671 (2015)Google Scholar
  4. 4.
    Aneiros, G., Vieu, P.: Sparse nonparametric model for regression with functional covariate. J. Nonparametr. Stat. 28, 839–859 (2016)Google Scholar
  5. 5.
    Aneiros, G., Vieu, P.: Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data. Test 25, 27–32 (2016)Google Scholar
  6. 6.
    Belloni, A., Chernozhukov, V., Wang, L.: Pivotal estimation via square-root Lasso in nonparametric regression. Ann. Stat. 42, 757–788 (2014)Google Scholar
  7. 7.
    Bongiorno, E., Goia, A., Salinelli, E., Vieu, P.: An overview of IWFOS’2014. In: Contributions in Infinite-Dimensional Statistics and Related Topics, 1–6. Esculapio, Bologna (2014)Google Scholar
  8. 8.
    Bühlmann, P., van de Geer, S.: Statistics for High-Dimensional Data. Methods, Theory and Applications. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Comminges, L., Dalalyan, A.: Tight conditions for consistency of variable selection in the context of high dimensionality. Ann. Stat. 40, 2667–2696 (2012)Google Scholar
  10. 10.
    Cuevas, A.: A partial overview of the theory of statistics with functional data. J. Stat. Plann. Inference 147, 1–23 (2014)Google Scholar
  11. 11.
    Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348–1360 (2001)Google Scholar
  12. 12.
    Fan, J., Peng, H.: Nonconcave penalized likelihood with a diverging number of parameters. Ann. Stat. 32, 928–961 (2004)Google Scholar
  13. 13.
    Ferraty, F., Goia,A., Salinelli, E., Vieu, P.: Functional projection pursuit regression. Test 22, 293–320 (2013).Google Scholar
  14. 14.
    Ferraty, F., Hall, P., Vieu, P.: Most-predictive design points for functional data predictors. Biometrika 97, 807–824 (2010)Google Scholar
  15. 15.
    Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer-Verlag, New York (2006)Google Scholar
  16. 16.
    Goia, A., Vieu, P.: A partitioned single functional index model. Comput. Stat. 30, 673–692 (2015)Google Scholar
  17. 17.
    Goia, A., Vieu, P.: An introduction to recent advances in high/infinite dimensional statistics. J. Multivariate Anal. 46, 1–6 (2016)Google Scholar
  18. 18.
    Guo, J., Tang, M., Tian, M., Zhu, K.: Variable selection in high-dimensional partially linear additive models for composite quantile regression. Comput. Statist. Data Anal. 65, 56–67 (2013)Google Scholar
  19. 19.
    Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis. (Fourth edition) Springer, Heidelberg (2015)Google Scholar
  20. 20.
    Hong, Z., Hu, Y., Lian, H.: Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty. Metrika 76, 887–908 (2013)Google Scholar
  21. 21.
    Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer, New York (2012)Google Scholar
  22. 22.
    Hsing, T., Eubank, R.: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. John Wiley & Sons, Chichester (2015)Google Scholar
  23. 23.
    Hu, Y., Lian, H.: Variable selection in a partially linear proportional hazards model with a diverging dimensionality. Stat. Probab. Lett. 83, 61–69 (2013)Google Scholar
  24. 24.
    Huang, J., Horowitz, J., Wei, F.: Variable selection in nonparametric additive models. Ann. Stat. 38, 2282–2313 (2010)Google Scholar
  25. 25.
    Huang, J., Xie, H.: Asymptotic oracle properties of SCAD-penalized least squared estimators. Asymptotics: Particles, Processes and Inverse Problems. In: IMS Lecture Notes-Monograph Series 55, 149–166 (2007)Google Scholar
  26. 26.
    Kneip, A., Poss, D., Sarda, P.: Functional linear regression with points of impact. Ann. Stat. 44, 1–30 (2016)Google Scholar
  27. 27.
    Kneip, A., Sarda, P.: Factor models and variable selection in high-dimensional regression analysis. Ann. Stat. 39, 2410–2447 (2011)Google Scholar
  28. 28.
    Lafferty, J.,Wasserman, L.: RODEO: Sparse, greedy, nonparametric regression. Ann. Stat. 36, 28–63 (2008)Google Scholar
  29. 29.
    Liu, S., McGree, J., Ge, Z., Xie, Y.: Computational and Statistical Methods for Analysing Big Data with Applications. Elsevier/Academic Press, Amsterdam (2015)Google Scholar
  30. 30.
    Matwin, S., Mielniczuk, J. (Eds): Challenges in Computational Statistics and Data Mining. Springer (2016)Google Scholar
  31. 31.
    McKeague, I., Sen, B.: Fractals with point impact in functional linear regression. Ann. Stat. 38, 2559–2586 (2010)Google Scholar
  32. 32.
    Meier, L., van de Geer, S., Bühlmann, P.: High-dimensional additive modeling. Ann. Stat. 37, 3779–3821 (2009)Google Scholar
  33. 33.
    Ramsay, J., Silverman, B.: Functional Data Analysis. (Second edition) Springer, New York (2005)Google Scholar
  34. 34.
    Vieu, P.: Choice of regressors in nonparametric estimation. Comput. Statist. Data Anal. 17, 575–594 (1994)Google Scholar
  35. 35.
    Wang, S., Su, L.: Simultaneous Lasso and Dantzig selector in high dimensional nonparametric regression. Int. J. Appl. Math. Stat. 42, 103–118 (2013)Google Scholar
  36. 36.
    Zhang, P.: Variable selection in nonparametric regression with continuous covariates. Ann. Stat. 19, 1869–1882 (1991)Google Scholar
  37. 37.
    Zhao, Y., Todd O., Reiss, P.: Wavelet-based LASSO in functional linear regression. J. Comput. Graph. Statist. 21, 600–617 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidade da CoruñaA CoruñaSpain
  2. 2.Institut de MathématiquesUniversité Paul SabatierToulouseFrance

Personalised recommendations