Variable selection in Functional Additive Regression Models

  • Manuel Febrero-BandeEmail author
  • Wenceslao González-Manteiga
  • Manuel Oviedo de la Fuente
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


This paper considers the problem of variable selection when some of the variables have a functional nature and can be mixed with other type of variables (scalar, multivariate, directional, etc). Our proposal begins with a simple null model and sequentially selects a new variable to be incorporated into the model. For the sake of simplicity, this paper only uses additive models. However, the proposed algorithm may assess the type of contribution (linear, non linear, …) of each variable. The algorithm have showed quite promising results when applied to real data sets.


Variable Selection Distance Correlation Functional Covariates Meteorological Information Scalar Covariates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akaike, H.: Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2), 255–265 (1973)Google Scholar
  2. 2.
    Bühlmann, P., Yu, B.: Boosting with the L 2 loss: regression and classification. J. Am. Stat. Assoc. 98(462), 324–339 (2003)Google Scholar
  3. 3.
    Du, P., Cheng, G., Liang, H.: Semiparametric regression models with additive nonparametric components and high dimensional parametric components. Comput. Stat. Data Anal. 56(6), 2006–2017 (2012)Google Scholar
  4. 4.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Technical report, Department of Statistics (2002)Google Scholar
  5. 5.
    Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)Google Scholar
  6. 6.
    Febrero-Bande, M., González-Manteiga, W.: Generalized additive models for functional data. Test 22(2), 278–292 (2013)Google Scholar
  7. 7.
    Ferraty, F., Vieu, P.: Additive prediction and boosting for functional data. Comput. Stat. Data Anal. 53(4), 1400–1413 (2009)Google Scholar
  8. 8.
    Hastie, T., Tibshirani, R., Wainwright, M.: Statistical learning with sparsity: the LASSO and generalizations. CRC Press (2015)Google Scholar
  9. 9.
    Lin, Y., Zhang, H.H.: Component selection and smoothing in smoothing spline analysis of variance models. Ann. Stat. 34(5), 2272–2297 (2006)Google Scholar
  10. 10.
    Liu, X., Wang, L., Liang, H.: Estimation and variable selection for semiparametric additive partial linear models (ss-09-140). Stat. Sinica 21(3), 1225 (2011)Google Scholar
  11. 11.
    Lyons, R.: Distance covariance in metric spaces. Ann. Probab. 41(5), 3284–3305 (2013)Google Scholar
  12. 12.
    Mallows, C.L.: Some comments on C p. Technometrics 15(4), 661–675 (1973)Google Scholar
  13. 13.
    Müller, H.G., Yao, F.: Functional additive models. J. Am. Stat. Assoc. (2012)Google Scholar
  14. 14.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis and machine intelligence 27(8), 1226–1238 (2005)Google Scholar
  15. 15.
    Radchenko, P., James, G.M.: Improved variable selection with Forward-Lasso adaptive shrinkage. Ann. Appl. Stat. 5(1), 427–448 (2011).Google Scholar
  16. 16.
    Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)Google Scholar
  17. 17.
    Stone, M.: Comments on model selection criteria of Akaike and Schwarz. J. Roy. Stat. Soc. B Met. pp. 276–278 (1979)Google Scholar
  18. 18.
    Székely, G.J., Rizzo, M.L., Bakirov, N.K., et al.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)Google Scholar
  19. 19.
    Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc. B Met. pp. 267–288 (1996)Google Scholar
  20. 20.
    Wang, L., Liu, X., Liang, H., Carroll, R.J.: Estimation and variable selection for generalized additive partial linear models. Ann. Stat. 39(4), 1827 (2011)Google Scholar
  21. 21.
    Xue, L.: Consistent variable selection in additive models. Stat. Sinica pp. 1281–1296 (2009)Google Scholar
  22. 22.
    Zou, H.: The adaptive LASSO and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manuel Febrero-Bande
    • 1
    Email author
  • Wenceslao González-Manteiga
    • 1
  • Manuel Oviedo de la Fuente
    • 2
  1. 1.Department of Statistics, Mathematical Analysis and OptimizationUniversidade de Santiago de CompostelaSantiagoSpain
  2. 2.Technological Institute for Industrial Mathematics and Department of Statistics, Mathematical Analysis and OptimizationUniversidade de Santiago de CompostelaSantiagoSpain

Personalised recommendations