Functional data analysis of “Omics” data: how does the genomic landscape influence integration and fixation of endogenous retroviruses?

  • Marzia A. Cremona
  • Rebeca Campos-Sánchez
  • Alessia Pini
  • Simone Vantini
  • Kateryna D. Makova
  • Francesca Chiaromonte
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

We consider thousands of endogenous retrovirus detected in the human and mouse genomes, and quantify a large number of genomic landscape features at high resolution around their integration sites and in control regions. We propose to analyze this data employing a recently developed functional inferential procedure and functional logistic regression, with the aim of gaining insights on the effects of genomic landscape features on the integration and fixation of endogenous retroviruses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campos-Sánchez, R., Cremona, M. A., Pini, A., Chiaromonte, F., Makova, K. D.: Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. PLoS Comput. Biol., 12(6):1–41, 06 (2016)Google Scholar
  2. 2.
    Campos-Sánchez, R., Kapusta, A., Feschotte, C., Chiaromonte, F., Makova, K. D.: Genomic landscape of human, bat and ex vivo DNA transposon integrations. Mol. Biol. Evol., page msu138, (2014)Google Scholar
  3. 3.
    Cremona, M. A., Pini, A., Chiaromonte, F., Vantini, S.: IWTomics: Interval-Wise Testing for omics data, (2016) R package version 0.99.9.Google Scholar
  4. 4.
    Cremona, M. A., Pini, A., Makova, K. D., Chiaromonte, F., Vantini, S.: IWTomics: testing high resolution “Omics” data at multiple locations and scales. In preparation, (2017)Google Scholar
  5. 5.
    Cremona, M. A., Sangalli, L. M., Vantini, S., Dellino, G. I., Pelicci, P. G., Secchi, P., Riva, L.: Peak shape clustering reveals biological insights. BMC Bioinform., 16(1):349, 10 (2015)Google Scholar
  6. 6.
    Kvikstad, E. M., Makova, K. D.: The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. Genome Res., 20(5):600–613, (2010)Google Scholar
  7. 7.
    Pini, A., Vantini, S.: The interval testing procedure: a general framework for inference in functional data analysis. Biometrics, (2016)Google Scholar
  8. 8.
    Pini, A., Vantini, S.: Interval-wise testing for functional data. J. Nonparametr. Stat., In press, (2017)Google Scholar
  9. 9.
    Reimherr, M., Nicolae, D.: A functional data analysis approach for genetic association studies. Ann. Appl. Stat., 8(1):406–429, (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marzia A. Cremona
    • 1
  • Rebeca Campos-Sánchez
    • 2
  • Alessia Pini
    • 3
  • Simone Vantini
    • 3
  • Kateryna D. Makova
    • 4
  • Francesca Chiaromonte
    • 5
    • 6
  1. 1.Department of StatisticsPennsylvania State UniversityState CollegeUSA
  2. 2.Centro de Investigacin en Biologa Celular y MolecularUniversidad de Costa RicaSan PedroCosta Rica
  3. 3.MOX - Department of MathematicsPolitecnico di MilanoMilanItaly
  4. 4.Center for Medical Genomics and Department of BiologyPennsylvania State UniversityState CollegeUSA
  5. 5.Center for Medical Genomics and Department of StatisticsPennsylvania State UniversityState CollegeUSA
  6. 6.Sant’Anna School of Advanced StudiesPisaItaly

Personalised recommendations