Permutation tests in the two-sample problem for functional data

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


We propose two kind of permutation tests for the two sample problem for functional data. One is based on nearest neighbours and the other based on functional depths.


Permutation Test Functional Data Nitrogen Dioxide Functional Data Analysis Joint Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Estrada, A.M.: Nociones de Profundidad en Análisis de Datos Funcionales, MSc Thesis, Universidad de Los Andes, Colombia (2014)Google Scholar
  2. 2.
    Fraiman, R., Muniz, G: Trimmed means for functional data. TEST 10(2): 419–440 (2001)Google Scholar
  3. 3.
    Good, P.: Permutation, Parametric and Bootstrap Tests of Hypothesis, Springer (2005)Google Scholar
  4. 4.
    Hedges, L. V., Olkin, I.: Statistical Methods for Meta-Analysis, Academic Press (1985)Google Scholar
  5. 5.
    Liu, R. Y., Parelius, J. M., Singh, K.: Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference. Ann. Statist. 27(3), 783–840 (1999)Google Scholar
  6. 6.
    López-Pintado, S., Romo, J.: Depth-based inference for functional data. Comput. Statist. Data Anal. 51, 4957–4968 (2007)Google Scholar
  7. 7.
    López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Amer. Statist. Assoc. 104, 718–734 (2009)Google Scholar
  8. 8.
    Peña, J.: Propuestas para el problema de dos muestras con datos funcionales., MSc Thesis, Universidad de Los Andes, Colombia (2012)Google Scholar
  9. 9.
    Quiroz, A. J.: Graph-Theoretical Methods. In Encyclopedia of Statistical Sciences, 2nd Edition, S. Kotz, C. B. Read, N. Balakrishnan and B. Vidakovic, editors. Vol 5, pp 2910–2916, Wiley and Sons, New York (2006)Google Scholar
  10. 10.
    Schilling, M. F. Multivariate two-sample tests based on nearest neighbours. J. Amer. Statist. Assoc. 81:395, 799–806 (1986)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidad Autónoma de BarcelonaBarcelonaSpain
  2. 2.Universidad de Los AndesBogotáColombia

Personalised recommendations