Advertisement

Rock Physics Modeling of Ankleshwar Reservoir: A CO2-EOR Perspective

  • Shib Sankar GanguliEmail author
Chapter
  • 384 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Enhanced oil recovery (EOR) operations offer a fundamental challenge in the study of reservoir characterization primarily due to the lack of understanding of inherent complexity in the estimation of reservoir parameters. Rock physics models play a crucial role in solving production problems and reducing the ambiguities of fluids within reservoir.

Keywords

Cross Plot Rock Physic Reservoir Characterization Clean Sand Cambay Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersen CF, Grosfeld V, Wijngaarden AJV, Haaland AN (2009) Interactive interpretation of 4D prestack inversion data using rock physics templates, dual classification, and real-time visualization. Lead Edge 28(8):898–906CrossRefGoogle Scholar
  2. Avseth P (2000) Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems. PhD thesis, Stanford University, p 181Google Scholar
  3. Avseth P, Dvorkin J, Mavko G, Rykkje J (2000) Rock physics diagnostics of North Sea sands: link between microstructure and seismic properties. Geophys Res Lett 27(17):2761–2764CrossRefGoogle Scholar
  4. Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation: applying rock physics to reduce interpretation risk. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Avseth P, Mukerji T, Mavko G, Dvorkin J (2010) Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—a review of selected models and suggested workflows. Geophysics 75(5):75A31–75A47Google Scholar
  6. Batzle M, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57(11):1396–1408CrossRefGoogle Scholar
  7. Berryman JG (1980) Long-wavelength propagation in composite elastic media. J Acoust Soc Am 68:1809–1831CrossRefGoogle Scholar
  8. Biot MA (1956) Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range and II. Higher-frequency range. J Acou Soc Am 28:168–191Google Scholar
  9. Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics 50:571–581CrossRefGoogle Scholar
  10. Chi X, Han D (2009) Lithology and fluid differentiation using rock physics templates. Lead Edge 28:60–65CrossRefGoogle Scholar
  11. Digby PJ (1981) The effective elastic moduli of porous granular rocks. J Appl Mech 48(4):803–808CrossRefGoogle Scholar
  12. Dvorkin J, Nur A (1996) Elasticity of high-porosity sandstones: theory for two North Sea data sets. Geophysics 61:1363–1370CrossRefGoogle Scholar
  13. Dvorkin J, Nur A, Yin H (1994) Effective properties of cemented granular materials. Mech Mater 18:351–366. doi: 10.1016/0167-6636(94)90044-2 CrossRefGoogle Scholar
  14. Gassmann F (1951) Über die elastizität poröser medien: Vierteljahrss-chrift der Naturforschenden Gesellschaft in Zurich 96, 1–23. The English translation of this paper is available at http://sepwww.stanford.edu/sep/berryman/PS/gassmann.pdf
  15. Greenberg ML, Castagna JP (1992) Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications. Geophys Prospect 40(2):195–209CrossRefGoogle Scholar
  16. Han D (1986) Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments. PhD thesis, Stanford UniversityGoogle Scholar
  17. Han DH, Batzle ML (2004) Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 69(2):40–398CrossRefGoogle Scholar
  18. Hashin Z, Shtrikman S (1963) A variational approach to the elastic behavior of multiphase materials. J Mech Phys Solid 11:127–140Google Scholar
  19. Hill R (1952) The elastic behavior of crystalline aggregate. Proc Phys Soc Lond A 65:349–354CrossRefGoogle Scholar
  20. Hossain J (2011) Rock physics modelling of the North Sea greensand. PhD thesis, Department of Environmental Engineering, Technical University of DenmarkGoogle Scholar
  21. Klimentos T (1991) The effects of porosity-permeability-clay content on the velocity of compressional waves. Geophysics 56:1930–1939CrossRefGoogle Scholar
  22. Krief M, Garat J, Stellingwerff J, Ventre J (1990) A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). Log Anal 31:355–369Google Scholar
  23. Kuster GT, Toksӧz MN (1974) Velocity and attenuation of seismic waves in two-phase media. Geophysics 39:587–618CrossRefGoogle Scholar
  24. Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56:1940–1949CrossRefGoogle Scholar
  25. Mavko G, Mukerji T (1998) Bounds on low frequency seismic velocities in partially saturated rocks. Geophysics 63(3):918–924CrossRefGoogle Scholar
  26. Mavko G, Mukerji T, Dvorkin J (2009) The Rock physics handbook: tools for seismic analysis of Porous media, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Meneses CCC (2013) Dynamic reservoir characterization using 4D multicomponent seismic data and rock physics modeling at Delhi field, Louisiana. Master thesis, Colorado School of MinesGoogle Scholar
  28. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268Google Scholar
  29. Mukerji T, Berryman JG, Mavko G, Berge PA (1995a) Differential effective medium modeling of rock elastic moduli with critical porosity constraints. Geophys Res Lett 22:555–558CrossRefGoogle Scholar
  30. Mukerji T, Mavko G, Mujica D, Lucet N (1995b) Scale-dependent seismic velocity in heterogeneous media. Geophysics 60:1222–1233CrossRefGoogle Scholar
  31. Ødegaard E, Avseth P (2004) Well log and seismic data analysis using rock physics templates. First Break 22:37–43Google Scholar
  32. Reuss A (1929) Berechnung der Fliessgrenzen von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Ang Math Mech 9:49–58CrossRefGoogle Scholar
  33. Smith TM, Sondergeld CH, Rai CS (2003) Gassmann fluid substitutions: a tutorial. Geophysics 68:430–440CrossRefGoogle Scholar
  34. Vernik L, Nur A (1992) Petrophysical classification of siliciclastics for lithology and porosity prediction from seismic velocities. AAPG Bull. 76:1295–1309Google Scholar
  35. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, BerlinGoogle Scholar
  36. Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solid 35:213–226CrossRefGoogle Scholar
  37. Xu S, White RE (1995) A new velocity model for clay-sand mixtures. Geophys Prospect 43:91–118CrossRefGoogle Scholar
  38. Zimmerman RW (1991) Elastic moduli of a solid containing spherical inclusions. Mech Mater 12:17–24CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)/CSIR-National Geophysical Research InstituteHyderabad, Telangana StateIndia

Personalised recommendations