Induction of Cryptic Metabolite Production Through Epigenetic Tailoring in Colletotrichum gloeosporioides Isolated from Syzygium cumini

  • V. K. Sharma
  • J. Kumar
  • D. K. Singh
  • A. Mishra
  • S. K. Gond
  • S. K. Verma
  • A. Kumar
  • G. Singh
  • R. N. Kharwar


Recent advancement in the fungal molecular genetics has established that fungi have numerous genes or gene clusters that remain silent or unexpressed under the normal conditions. These genes can be activated through epigenetic modifiers to produce a wide range of potential bioactive metabolites of agricultural and pharmaceutical values. In this study one DNA methyltransferase inhibitor (5-azacytidine) and one histone deacetylase inhibitor (sodium butyrate) were used for the epigenetic treatment to the Colletotrichum gloeosporioides isolated from the surface-sterilized leaves of S. cumini. The crude compounds isolated from the epigenetically treated C. gloeosporioides were observed to exhibit increased antibacterial activity against human bacterial pathogens (Aeromonas hydrophila, Enterococcus faecalis, Escherichia coli, Salmonella typhi, Shigella boydii, and Staphylococcus aureus). In terms of antibacterial efficacy, the secondary metabolites extracted from the culture treated with 5-azacytidine were found to be the most effective against all the tested bacterial pathogens followed by cultures treated with sodium butyrate and the combined treatment of both 5-azacytidine and sodium butyrate compared to control except against the S. typhi. The HPLC profiling showed that fungal crude metabolite compounds from different treatments of epigenetic modulators activated the production of additional metabolites compared to the untreated control. Further, the total amount of secondary metabolites extracted with ethyl acetate from treated cultures showed severalfold increase. This indicates toward the change in the expression of some cryptic genes or gene cluster through epigenetic modification by 5-azacytidine and/or sodium butyrate treatment(s).


Endophytic fungi Epigenetic modulation HPLC Cryptic metabolites Syzygium cumini 


  1. Arivudainambi UE, Anand TD, Shanmugaiah V, Karunakaran C, Rajendran A (2011) Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 61:340–345CrossRefPubMedGoogle Scholar
  2. Baliga MS, Bhat HP, Baliga BRV, Wilson R, Palatty PL (2011) Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam. (black plum): a review. Food Res Int 44:1776–1789CrossRefGoogle Scholar
  3. Beau J, Mahid N, Burda WN, Harrington L, Shaw LN, Mutka T, Kyle DE et al (2012) Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii. Mar Drugs 10:762–774Google Scholar
  4. Brosch G, Loidl P, Graessle S (2008) Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 32:409–439CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chaudhary B, Mukhopadhyay K (2012) Syzygium cumini (L.) Skeels: a potential source of nutraceuticals. Int J Pharm Biol Sci 2:46–53Google Scholar
  6. Chen HJ, Awakawa T, Sun JY, Wakimoto T, Abe I (2013) Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L. Nat Prod Bioprospect 3:20–23CrossRefPubMedCentralGoogle Scholar
  7. Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213Google Scholar
  8. Fischer J, Schroeckh V, Brakhage AA (2016) Awakening of fungal secondary metabolite gene clusters. In: Schmoll M, Dattenböck C (eds) Gene expression systems in fungi: advancements and applications. Springer International Publishing, Cham, pp 253–273CrossRefGoogle Scholar
  9. Gangadevi V, Muthumary J (2008) Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol Balcanica 5:1–4Google Scholar
  10. Jeon J, Choi J, Lee GW, Park SY, Huh A, Dean RA, Lee YH (2015) Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci Rep 5:8567Google Scholar
  11. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228CrossRefPubMedGoogle Scholar
  12. Kharwar RN, Mishra A, Sharma VK, Gond SK, Verma SK, Kumar A, Kumar J et al (2014) Diversity and biopotential of endophytic fungal flora isolated from eight medicinal plants of Uttar Pradesh, India. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghuwanshi R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 23–39Google Scholar
  13. Kumar J, Sharma VK, Singh DK, Mishra A, Gond SK, Verma SK, Kumar A et al (2016) Epigenetic activation of antibacterial property of an endophytic Streptomyces coelicolor Strain AZRA 37 and identification of the induced protein using MALDI TOF MS/MS. PLoS One 11:e0147876. doi: 10.1371/journal.pone.0147876
  14. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294CrossRefPubMedGoogle Scholar
  15. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. PNAS 113:5970-5975Google Scholar
  16. Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73Google Scholar
  17. Mejía LC, Rojas EI, Maynard Z, Van Bael S, Arnold AE, Hebbar P, Samuels GJ et al (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14Google Scholar
  18. Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN (2012) Sourcing the fungal endophytes: a beneficial transaction of biodiversity, bioactive natural products, plant protection and nanotechnology. In: Satyanarayana T, Johri BN, Prakesh A Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht. pp 581–612CrossRefGoogle Scholar
  19. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335CrossRefPubMedPubMedCentralGoogle Scholar
  20. Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production and substrate utilization in endophytic fungi. Nat Toxins 1:185–196CrossRefPubMedGoogle Scholar
  21. Pillai TG, Jayaraj R (2015) Colletotrichum gloeosporioides: a true endophyte of the endangered tree, Cynometra travancorica in the western ghats. J Plant Pathol Microbiol 6:267. doi: 10.4172/2157-7471.1000267
  22. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686CrossRefPubMedGoogle Scholar
  23. Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450CrossRefGoogle Scholar
  24. Selker EU (1997) Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet 13:296–301CrossRefPubMedGoogle Scholar
  25. Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122Google Scholar
  26. Sim JH, Khoo CH, Lee LH, Cheah YK (2010) Molecular diversity of fungal endophytes isolated from Garcinia mangostana and Garcinia parvifolia. J Microbiol Biotechnol 20:651–658Google Scholar
  27. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216Google Scholar
  28. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefPubMedGoogle Scholar
  29. Sun J, Awakawa T, Noguchi H, Abe I (2012) Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L. Bioorg Med Chem Lett 22:6397–6400CrossRefPubMedGoogle Scholar
  30. Takahashi JA, Gomes DC, Lyra FH, dos Santos GF (2016) Modulation of fungal secondary metabolites biosynthesis by chemical epigenetics. In: Deshmukh SK, Misra JK, Tewari JP, Papp T (eds) Fungi: applications and management strategies. CRC Press, Boca Raton, pp 117–133Google Scholar
  31. Trojer P, Brandtner EM, Brosch G, Loidl P, Galehr J, Linzmaier R, Haas H et al (2003) Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res 31:3971–3981CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tung CY, Yang DB, Gou M (2002) A preliminary study on the condition of the culture and isolate of endophytic fungus producing Vincristine. J Chuxiong Normal Univ 6:39–41Google Scholar
  33. Ul-Hassan SR, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology 158:465–473Google Scholar
  34. Vasanthakumari MM, Jadhav SS, Sachin N, Vinod G, Shweta S, Manjunatha BL, Kumara PM et al (2015) Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J Microbiol Biotechnol 31:1629–1639CrossRefPubMedGoogle Scholar
  35. Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4:1511–1532PubMedGoogle Scholar
  36. Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431Google Scholar
  37. Waddington CH (1942) The epigenotype. Endeavour 1:18–20Google Scholar
  38. Wang WX, Kusari S, Laatsch H, Golz C, Kusari P, Strohmann C, Kayser O et al (2016) Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J Nat Prod 79:704. PubMedID: 26905687Google Scholar
  39. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897CrossRefPubMedGoogle Scholar
  40. Yang XL, Awakawa T, Wakimoto T, Abe I (2013) Induced production of novel prenyldepside and coumarins in endophytic fungi Pestalotiopsis acaciae. Tetrahedron Lett 54:5814–5817Google Scholar
  41. Zhang W, Shao CL, Chen M, Liu QA, Wang CY (2014) Brominated resorcylic acid lactones from the marine-derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors. Tetrahedron Lett 55:4888–4891Google Scholar
  42. Zhou Y, Cambareri E, Kinsey J (2001) DNA methylation inhibits expression and transposition of the Neurospora Tad retrotransposon. Mol Genet Genomics 265:748–754Google Scholar
  43. Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530Google Scholar
  44. Zutz C, Bandian D, Neumayer B, Speringer F, Gorfer M, Wagner M, Strauss J, et al (2014) Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens. Biomed Res Int 2014:1–13. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • V. K. Sharma
    • 1
  • J. Kumar
    • 1
  • D. K. Singh
    • 1
  • A. Mishra
    • 1
  • S. K. Gond
    • 2
  • S. K. Verma
    • 1
  • A. Kumar
    • 3
  • G. Singh
    • 1
  • R. N. Kharwar
    • 1
  1. 1.Mycopathology and Microbial Technology Laboratory, Centre of Advanced Study in BotanyBanaras Hindu UniversityVaranasiIndia
  2. 2.Botany Section, MMVBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of BotanyBudhha PG CollegeKushinagarIndia

Personalised recommendations