Advertisement

Diversity and Biotechnological Potential of Endophytic Microorganisms Associated with Tropical Mangrove Forests

  • Fernanda Luiza Souza Sebastianes
  • João Lucio de Azevedo
  • Paulo Teixeira Lacava
Chapter

Abstract

Mangroves are typical tropical ecosystems situated between land and sea. These biological communities are frequently found in tropical and subtropical areas and occupy approximately 18.1 million hectares of the planet. Endophytic microorganisms inhabit the internal tissues of plants without generating negative effects and represent an extensive source of promising natural products. Endophytes protect the plant host against predators and pathogens, including cattle and insect pests. That may also increase the resistance of plants against biotic and abiotic stresses and produce plant growth hormones, antibiotics, enzymes, and many other compounds of biotechnological interest. Endophytic microorganisms produce antibiotics that enable their survival in competitive habitats with other microorganisms protecting the host against other bacterial and fungal pathogens. The biochemical versatility and diversity of rare microorganisms suggest that many active compounds remain unknown. Endophytes from mangroves open up new areas of potential biotechnological exploitation; thus, isolating and cultivating these organisms are of great importance. The production of bioactive natural compounds that are important for both pharmaceutical and agricultural fields is widespread among endophytes. The great biodiversity observed in the mangrove ecosystem reinforces the importance of studying endophytic microorganisms, particularly the isolation of new compounds.

Keywords

Biological control Diversity Endophytes Endophytic bacteria Endophytic fungi Mangrove Natural products Plant growth promotion 

References

  1. Agusta A, Ohaski K, Shibuya H (2006) Bisanthraquione metabolites produced by the endophytic fungus Diaporthe sp. Chem Pharm Bull 54:579–582CrossRefPubMedGoogle Scholar
  2. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol Res 163:173–181CrossRefPubMedGoogle Scholar
  3. Andersson PF, Bengtsson S, Stenlid J, Broberg A (2012) B-norsteroids from Hymenoscyphus pseudoalbidus. Molecules 17:7769–7781CrossRefPubMedGoogle Scholar
  4. Andersson PF, Bengtsson S, Cleary M, Stenlid J, Broberg A (2013) Viridin-like steroids from Hymenoscyphus pseudoalbidus. Phytochemistry 86:195–200CrossRefPubMedGoogle Scholar
  5. Anu CJ, Priscilla HC, Jijo CJ (2014) Production and purification of cellulase enzyme by endophytic Bacillus sp. isolated from Rhizophora mucronata. Int J Agric Environ Biotechnol 7:367–370CrossRefGoogle Scholar
  6. Araújo WL, Marcon J, Maccheroni W Jr, Elsas JDV, Vuurde JLV, Azevedo JL (2002) Diversity of endophytic bacterial populations and interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914CrossRefPubMedPubMedCentralGoogle Scholar
  7. Araújo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Ait Barka E, Clément C (eds) Plant-microbe interactions, vol 1. Research Signpost, Kerala, pp 1–21Google Scholar
  8. Azevedo JL (2014) Endophytic fungi from Brazilian tropical hosts and their biotechnological applications. In: Kharwar RN, Upadhyay R, Dubey N, Raghuwansh R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 17–22Google Scholar
  9. Azevedo JL, Araújo WL (2007) Diversity and applications of endophytic fungi isolated from tropical plants. In: Ganguli BN, Deshmukh SK (eds) Fungi: multifaceted microbes. CRC Press, Boca Raton, pp 189–207Google Scholar
  10. Azevedo JL, Maccheroni W, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65CrossRefGoogle Scholar
  11. Bacon CW, White JF Jr (2000) Microbial endophytes. Marcel Dekker, New York, p 487Google Scholar
  12. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 53–69CrossRefGoogle Scholar
  13. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685CrossRefPubMedGoogle Scholar
  14. Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, Souza-Motto CM (2012) Richness of endophytic fungi from Opuntia fiscus-indica mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995CrossRefPubMedGoogle Scholar
  15. Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149CrossRefGoogle Scholar
  16. Buatong J, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2011) Antimicrobial activity of crude extracts from mangrove fungal endophytes. World J Microbiol Biotechnol 27:3005–3008CrossRefGoogle Scholar
  17. Cao S, Ross L, Tamayo G, Clardy J (2010) Asterogynins: secondary metabolites from a costa Rican endophytic fungus. Org Lett 12:4661–4663CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carrim AJI, Barbosa EC, Vieira JDG (2006) Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). Braz Arch Biol Technol 49:353–359CrossRefGoogle Scholar
  19. Castro RA (2011) Estudo da comunidade bacteriana endofítica cultivável associada aos manguezais de Cananéia e Bertioga SP. MS Thesis, University of São Paulo, Piracicaba, 91 ppGoogle Scholar
  20. Castro RC, Quecine MC, Lacava PT, Batista BD, Luvizotto DM, Marcon J, Ferreira A, Melo IS, Azevedo JL (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springerplus 3:1–9CrossRefGoogle Scholar
  21. Chaeprasert S, Piapukiew J, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53:555–564CrossRefGoogle Scholar
  22. Cheng Z, Pan J, Tang W, Chen Q, Lin Y (2009) Biodiversity and biotechnological potential of mangrove-associated fungi. J For Res 20:63–72CrossRefGoogle Scholar
  23. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis Vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693CrossRefPubMedPubMedCentralGoogle Scholar
  24. Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608CrossRefPubMedPubMedCentralGoogle Scholar
  25. Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366CrossRefGoogle Scholar
  26. de Bary A (1866) Morphologie, Phisiologie der pilze, flechten und myxomyceten. Holmeister’s handbook of physiological Botany, LeipzigCrossRefGoogle Scholar
  27. Deivanai S, Bindusara AS, Prabhakaran G, Bhore SJ (2014) Culturable bacterial endophytes isolated from mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice. J Nat Sci Biol Med 5:437–444CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dettrakul S, Kittakoop P, Isaka M, Nopichai S, Suyarnsestakorn C, Tanticharoen M, Thebtaranonth Y (2003) Antimycobacterial pimarane diterpenes from fungus Diaporthe sp. Bioorg Med Chem Lett 13:1253–1255CrossRefPubMedGoogle Scholar
  29. Dias ACF, Andreote FD, Dini-Andreote F, Lacava PT, Sá ALB, Melo IS, Azevedo JL, Araújo WL (2009) Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J Microbiol Biotechnol 25:1305–1311CrossRefGoogle Scholar
  30. Ding L, Münch J, Goerls H, Maier A, Fiebig HH, Lin WH, Hertweck C (2010) Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett 20:6685–6687CrossRefPubMedGoogle Scholar
  31. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333CrossRefPubMedGoogle Scholar
  32. Dourado MN, Ferreira A, Araújo WL, Azevedo JL, Lacava PT (2012) The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. Biotechnol Res Int 2012:759865CrossRefPubMedPubMedCentralGoogle Scholar
  33. Eldeen IMS (2014) Isolation of 12 bacterial endophytes from some mangrove plants and determination of antimicrobial properties of the isolates and the plant extracts. Int J Phytomedicine 6:425–432Google Scholar
  34. Gayathri P, Muralikrishnan V (2013) Isolation of endophytic bacteria from mangrove, bananas and sugarcane for their biological activities. Asian J Res Biol Pharm Sci 1:19–27Google Scholar
  35. Gayathri S, Saravanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. Indian J Biotechnol 9:397–402Google Scholar
  36. Gazis R, Chavern P (2010) Diversity of fungal endophytes on leaves and stems of wild rubber tress (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254CrossRefGoogle Scholar
  37. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526CrossRefPubMedPubMedCentralGoogle Scholar
  38. Habibi S, Djedidi S, Prongjunthuek K, Mortuza MF, Ohkama-Ohtsu N, Sekimoto H, Yokoyoma T (2014) Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 379:51–66CrossRefGoogle Scholar
  39. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  40. Hanson JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12:381–384CrossRefPubMedGoogle Scholar
  41. Harman GE (1998) Björjmann T. Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE (ed) Trichoderma and Gliocladium. Taylor & Francis, London, pp 229–265Google Scholar
  42. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species - opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefPubMedGoogle Scholar
  43. Janarthine SRS, Eganathan P (2012) Plant growth promoting of endophytic Sporosarcina aquimarina SjAM16103 isolated from the pneumatophores of Avicennia marina L. Int J Microbiol 2012:532060. doi: 10.1155/2012/532060 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Janarthine SR, Eganathan P, Balasubramanian T, Vijayalakshmi S (2011) Endophytic bacteria isolated from the pneumatophores of Avicennia marina. Afr J Microbiol Res 5:4455–4466Google Scholar
  45. Jose AC, Christy PH (2013) Assessment of antimicrobial potential of endophytic bacteria isolated from Rhizophora mucronata. Int J Curr Microbiol App Sci 2:188–194Google Scholar
  46. Kayalvizhi N, Gunasekaran P (2010) Purification and characterization of a novel broad-spectrum bacteriocin from Bacillus licheniformis MKU3. Biotechnol Bioprocess Eng 15:365–370CrossRefGoogle Scholar
  47. Lacava PT, Azevedo JL (2013) Endophytic bacteria: a biotechnological potential in agrobiology system. In: Maheshwari DK, Sarah M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 1–44CrossRefGoogle Scholar
  48. Lacava PT, Azevedo JL (2014) Biological control of insect-pest and diseases by endophytes. In: Vijay VC, Alan CG (eds) Advances in endophytic research advances. Springer, New Delhi, pp 231–243CrossRefGoogle Scholar
  49. Lee K, Lim YS, Yong D, Yum JH, Chong Y (2003) Evaluation of the Hodge test and the imipenem-EDTA double disk synergy test for differentiation of metallo-β-lactamases producing clinical isolates of Pseudomonas spp. and Acinetobacter sp. J Clin Microbiol 41:4623–4629CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58CrossRefPubMedGoogle Scholar
  51. Liu AR, Wu XP, Xu T (2007) Research advances in endophytic fungi of mangrove. Chin J Appl Ecol 18:912–918Google Scholar
  52. Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009a) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484CrossRefGoogle Scholar
  53. Malboobi MA, Owlia P, Behbahani M, Sarokhani E, Moradi S, Yakhchali B, Deljou A, Heravi KM (2009b) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25:1471–1477CrossRefGoogle Scholar
  54. Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol 55:241–251Google Scholar
  55. Mélançon D, Grenier D (2003) Production and properties of bacteriocin-like inhibitory substances from the swine pathogen Stereptococcus suis serotype 2. Appl Environ Microbiol 69:4482–4488Google Scholar
  56. Mendes R, Azevedo JL (2008) Valor biotecnológico de fungos endofíticos isolados de plantas de interesse econômico. In: Maia MC, Malosso E, Jano-Melo AM (eds) Micologia: avanços no conhecimento. Sociedade Brasileira de Micologia, Recife, pp 129–140Google Scholar
  57. Owen NL, Hundley N (2004) Endophytes the chemical synthesizer inside plants. Sci Prog 87:79–99CrossRefPubMedGoogle Scholar
  58. Paz LCP, Santin RCM, Guimarães AM, Rosa OPP, Dias ACF, Quecine MC, Azevedo JL, Matsumura AT (2012) Eucalyptus growth promotion by endophytic Bacillus spp. Genet Mol Res 11:3711–3720CrossRefPubMedGoogle Scholar
  59. Pittayakhajonwut P, Dramae A, Madla S, Lartpornmatulee N, Boonyuen N, Tanticharoen M (2006) Depsidones from the endophytic fungus BCC 8616. J Nat Prod 69:1361–1363CrossRefPubMedGoogle Scholar
  60. Priscilla HCS, Sudha SS (2014) A study on the potential of endophytic bacteria as biocontrol agent. Scrut Int Res J Biol Environ Sci 1:8–12Google Scholar
  61. Quecine MC, Araújo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491CrossRefPubMedGoogle Scholar
  62. Quecine MC, Lacava PT, Magro SR, Parra JRP, Araujo WL, Azevedo JL, Pizzirani-Kleiner AA (2011) Partial characterization of chitinolytic extract from endophytic Streptomyces sp. and its effects on the boll weevil. J Agric Sci Technol 5:420–427Google Scholar
  63. Quecine MC, Batista BD, Lacava PT (2014) Diversity and biotechnological potential of plant-associated endophytic bacteria. In: Kumar AP, Govil JN (eds) Biotechnology: plant biotechnology, vol 2. Studium Press LLC, Houston, pp 377–423Google Scholar
  64. Rao KPC, Verchot LV, Joshi LM (2007) Adaptation to climate change through sustainable management and development of agroforestry systems. J SAT Agric Res 4:1–30Google Scholar
  65. Ravikumar S, Gnanadesigan M, Suganthi P, Ramalakshmi A (2010) Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int J Med Sci 2:94–99Google Scholar
  66. Ravikumar S, Inbaneson SJ, Uthiraselvam M, Priya SR, Ramu A, Banerjee MB (2011) Diversity of endophytic actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. J Pharm Res 4:294–296Google Scholar
  67. Rivera-Orduña FN, Suarez-Sanches RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globose (Mexican yew). Fungal Divers 47:65–74CrossRefGoogle Scholar
  68. Rukshana Begum S, Tamilselvi KS (2016) Endophytes are plant helpers: an overview. Int J Curr Microbiol App Sci 5:424–436CrossRefGoogle Scholar
  69. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefPubMedGoogle Scholar
  70. Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280CrossRefPubMedGoogle Scholar
  71. Saravanan P, Ramya V, Sridhar H, Balamurugan V, Umamaheswari S (2010) Antibacterial activity of Allium sativum L. on pathogenic bacterial strains. Glob Vet 4:519–522Google Scholar
  72. Sebastianes FLS, Lacava PT, Fávaro LCL, Rodrigues MBC, Araújo WL, Azevedo JL, Pizzirani-Kleiner AA (2012a) Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 58:21–33CrossRefPubMedGoogle Scholar
  73. Sebastianes FS, Cabedo N, Aouad NE, Valente AMMP, Lacava PT, Azevedo JL, Pizzirani-Kleiner AA, Cortes D (2012b) 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 65:622–632CrossRefPubMedGoogle Scholar
  74. Sebastianes FLS, Romao-Dumaresq AS, Lacava PT, Harakava R, Azevedo JL, Melo IS, Pizzirani-Kleiner AA (2013) Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 59:153–166CrossRefGoogle Scholar
  75. Sebastianes FLS, Valente AMMP, Boffo EF, Ferreira AG, Melo IS, Moraes LAB, Azevedo JL, Pizzirani-Kleiner AA, Lacava PT (2016) Isolation of the antibacterial agent viridiol from the mangrove endophytic fungus Hypocrea virens, as monitored by a biologic assay against Escherichia coli and NMR spectroscopy. Curr Biotechnol (in press). http://www.eurekaselect.com/node/139752/article/isolation-of-the-antibacterial-agent-viridiol-from-the-mangroveendophytic-fungus-hypocrea-virens-as-monitored-by-a-biologic-assay-against-escherichia-coli-and-nmrspectroscopy)Google Scholar
  76. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249CrossRefPubMedGoogle Scholar
  77. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutant strains. Mol Plant-Microbe Interact 14:358–366CrossRefPubMedGoogle Scholar
  78. Siciliano SD, Fortin N, Mihoc N, Wisse G, Labelle S et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475CrossRefPubMedPubMedCentralGoogle Scholar
  79. Silva MRO, Almeida AC, Arruda FVF, Gusmão N (2011) Endophytic fungi from Brazilian mangrove plant Laguncularia racemose (L.) Gaertn. (Combretaceae): their antimicrobial potential. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Badajoz, Formatex, pp 1260–1266Google Scholar
  80. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) A-amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44:173–184Google Scholar
  81. Sivasithamparam K (1998) Ghisalberti EL. Secondary metabolism in Trichoderma and Gliocladium. In: Harman GE (ed) Trichoderma and Gliocladium. Taylor & Francis, London, pp 139–191Google Scholar
  82. Stamford TLM, Araujo JM, Stamford NP (1998) Atividade enzimática de microrganismos isolados do jacatupé (Pachyrhizus erosus L. Urban). Ciênc Tecnol Aliment 18:382–385CrossRefGoogle Scholar
  83. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502CrossRefPubMedPubMedCentralGoogle Scholar
  84. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefPubMedGoogle Scholar
  85. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequences analysis. Microb Ecol 55:415–424CrossRefPubMedGoogle Scholar
  86. Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467CrossRefGoogle Scholar
  87. Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006CrossRefGoogle Scholar
  88. Suryanarayanan TS, Venkatesan G, Murali TS (2003) Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Curr Sci 85:489–493Google Scholar
  89. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Aasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19CrossRefGoogle Scholar
  90. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459CrossRefPubMedGoogle Scholar
  91. Thatoi H, Behera BC, Mishra RR, Dutta SK (2013) Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63:1–19CrossRefGoogle Scholar
  92. Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76CrossRefPubMedGoogle Scholar
  93. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma sp: panoply of biological control. Biochem Eng J 37:1–20CrossRefGoogle Scholar
  94. Wang Y, Dai C-C (2011) Endophytes: a potencial resource for biosynthesis, biotranformation, and biodegradation. Review article. Ann Microbiol 61:207–215CrossRefGoogle Scholar
  95. Yuliar (2014) The effect of suppression of endophytic mangrove bacteria on leaf blight of rice caused by Xanthomonas oryzae pv.Oryzae. Global J Biol Agric Health Sci 3:1–7Google Scholar
  96. Zheng Y-K, Qiao X-G, Miao C-P, Liu K, Chen Y-W, Xu L-H, Zhao L-X (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66:529–542CrossRefGoogle Scholar
  97. Zhong-Shan C, Jia-Hui P, Wen-Cheng T, Qi-Jin C, Yong-Cheng L (2009) Biodiversity and biotechnological potential of mangrove associated fungi. J For Res 20:63–72CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fernanda Luiza Souza Sebastianes
    • 1
  • João Lucio de Azevedo
    • 1
  • Paulo Teixeira Lacava
    • 2
  1. 1.Department of Genetics“Luiz de Queiroz” College of Agriculture, University of São PauloPiracicabaBrazil
  2. 2.Laboratory of Microbiology and Biomolecules – LaMiB, Department of Morphology and PathologyCenter for Biological and Health Sciences, Federal University of São CarlosSão CarlosBrazil

Personalised recommendations