Advertisement

Genetically Modified Organisms in the Tropics: Challenges and Perspectives

  • Manuela Nobrega Dourado
  • Tiago Falda Leite
  • Paulo Augusto Viana Barroso
  • Welington Luiz Araújo
Chapter

Abstract

For many years, the breeding in plant and animal genomes has been performed using phenotypic selection, but although this strategy is still being used, many traits that could not be modified by classical breeding techniques have been introduced by genetic engineering, allowing to break the species barriers. These genetically modified organisms (GMOs) caused a revolution in the agriculture and enzyme production, since new plant and microorganism genotypes could be obtained, generating new process and strategies to produce food and enzyme. Although, plants expressing herbicide (glyphosate) and insect (Bt plants) resistance are the most used GMO, many other traits have been introduced in plants and microorganisms. The use of GM microorganisms (GMMs) in contention (e.g., in bioreactors) for the production of enzymes, drugs, biofuels, and chemical modification is common and widespread, but the releasing of this GMM is still been studied. In this chapter, we describe how this technology has been applied in tropical countries, including the possibilities that could be applied in these countries. In addition, the impact of genetically modified plants in the microbial communities was described, focusing in studies in Brazilian conditions.

Keywords

Genetically modified microorganism Genetically modified plants Microbial ecology, GMO regulation Transgeny effect Transgeny risk assessment Plant-microbe interaction 

References

  1. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139Google Scholar
  2. Ahmed FE (2003) Genetically modified probiotics in foods. Trends Biotechnol 21:491–497CrossRefPubMedGoogle Scholar
  3. Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D et al (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A 90:7327–7331CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072CrossRefPubMedGoogle Scholar
  5. Andreote FD, Mendes R, Dini-Andreote F, Rossetto PB, Labate CA, Pizzirani-Kleiner AA, van Elsas JD, Azevedo JL, Araujo WL (2008) Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development. Antonie Van Leeuwenhoek 93:415–424CrossRefPubMedGoogle Scholar
  6. Andreote FD, Carneiro RT, Salles JF, Marcon J, Labate CA, Azevedo JL, Araujo WL (2009a) Culture-independent assessment of rhizobiales-related alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microb Ecol 57:82–93CrossRefPubMedGoogle Scholar
  7. Andreote FD, Rossetto PB, Mendes R, Avila LA, Labate CA, Pizzirani-Kleiner AA, Azevedo JL, Araujo WL (2009b) Bacterial community in the rhizosphere and rhizoplane of wild type and transgenic eucalyptus. World J Microbiol Biotechnol 25:1065–1073CrossRefGoogle Scholar
  8. Araújo WL, Mano ET, Azevedo JL (2014) Diversidade Microbiana de Degradadores de Glifosato. In: Berger GU, Favoretto LRG (eds) Monitoramento Ambiental Soja Roundup Ready. Editora FEPAF, Botucatu, pp 361–406Google Scholar
  9. Asao H, Arai S, Nishizawa Y (2003) Environmental risk evaluation of transgenic strawberry expressing a rice chitinase gene. Seibutsu-Kogaku Kaishi 81:57–63Google Scholar
  10. Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393CrossRefGoogle Scholar
  11. Beatty BJ (2000) Genetic manipulation of vectors: a potential novel approach for control of vector-borne diseases. Proc Natl Acad Sci U S A 97:10295–10297CrossRefGoogle Scholar
  12. Berg P, Baltimore D, Brenner S, Roblin RO III, Singer MF (1975) Summary statement of the Asilomar conference on recombinant DNA molecules. Proc Natl Acad Sci U S A 72:1981–1984CrossRefPubMedPubMedCentralGoogle Scholar
  13. Berger GU, Favoretto LRG (2014) Monitoramento Ambiental Soja Roundup Ready. Editora FEPAF, Botucatu, 773pGoogle Scholar
  14. Bohm GMB, Castilhos D, Pigosso G, Trichez D, Rombaldi CV (2007) Efeito do controle de plantas concorrentes na biomassa e atividade microbiana em planossolo cultivado com soja BRS 244RR. R Bras Agrociência 13(4):503–508Google Scholar
  15. Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197CrossRefPubMedGoogle Scholar
  16. Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G (2003) Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21(2):157–162CrossRefPubMedGoogle Scholar
  17. Cardoso EJBN (2014) Fixação Biológica de Nitrogênio. In: Berger GU, Favoretto LRG (eds) Monitoramento Ambiental Soja Roundup Ready. Editora FEPAF, Botucatu, pp 409–428Google Scholar
  18. Carrenho R, Colozzi Filho A, Machineski O (2014) Diversidade de Fungos Micorrízicos Arbusculares. In: Berger GU, Favoretto LRG (eds) Monitoramento Ambiental Soja Roundup Ready. Editora FEPAF, Botucatu, pp 409–428Google Scholar
  19. Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A et al (2005) Impact of Bt corn on rhizospheric and on beneficial mycorrhizal symbiosis and soil eubacterial communities iosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chang S, Wei F, Yang Y, Wang A, Jin Z, Li J, He Y, Shu H (2015) Engineering tobacco to remove mercury from polluted soil. Appl Biochem Biotechnol 175(8):3813–3827CrossRefPubMedGoogle Scholar
  21. Chaurasia AK, Apte SK (2011) Improved eco-friendly recombinant anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl Environ Microbiol 77(2):395–399CrossRefPubMedGoogle Scholar
  22. Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91CrossRefPubMedGoogle Scholar
  23. Davison J (2002) Towards safer vectors for field release of recombinant bacteria. Environ Biosaf Res 1:9–1CrossRefGoogle Scholar
  24. Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650CrossRefPubMedGoogle Scholar
  25. Díaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180PubMedGoogle Scholar
  26. Dini-Andreote F, Andreote FD, Costa R, Taketani RG, van Elsas JD, Araújo WL (2010) Bacterial soil community in a Brazilian sugarcane field. Plant Soil 336:337–349CrossRefGoogle Scholar
  27. Donegan KK, Seidler RJ, Doyle JD, Porteous AL, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J Appl Ecol 36:920–936CrossRefGoogle Scholar
  28. Dunfield KE, Germida JJ (2003) Seasonal changes in the rizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69:7310–7318CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815CrossRefPubMedGoogle Scholar
  30. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1999) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 94:3274–3278CrossRefGoogle Scholar
  31. European Commission (2001) Directive 2001/18/EC of the European Parliament and the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC, L106. Off J Eur Communities 1–38Google Scholar
  32. Fang M, Kremer RJ, Motavalli PP, Davis G (2005) Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl Environ Microbiol 71(7):4132–4136CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ferreira Filho AS, Quecine MC, Bogas AC, Rossetto PB, Lima AOS, Lacava PT, Azevedo JL, Araújo WL (2012) Endophytic Methylobacterium extorquens expresses a heterologous β-1,4-endoglucanase a (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa. World J Microbiol Biotechnol 28:1475–1481CrossRefPubMedGoogle Scholar
  34. Freitas VJ, Serova IA, Andreeva LE, Dvoryanchikov GA, Lopes ES Jr, Teixeira DI, Dias LP et al (2007) Production of transgenic goat (Capra hircus) with human granulocyte colony stimulating factor (hG-CSF) gene in Brazil. An Acad Bras Cienc 79:585–592CrossRefPubMedGoogle Scholar
  35. Galleguillos C, Aguirre C, Barea JM, Azcón R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63CrossRefPubMedGoogle Scholar
  36. Garbeva P, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270CrossRefPubMedGoogle Scholar
  37. Gershon D, Lehrman S (1994) Genetically altered tomato set to get the green light. Nature 368:574–574CrossRefPubMedGoogle Scholar
  38. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R, Algire MA, Benders GA et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56CrossRefPubMedGoogle Scholar
  39. Götz M, Nirenberg H, Krause S, Draeger HS, Buchner A, Lottmann J, Berg G, Smalla K (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58:404–413CrossRefPubMedGoogle Scholar
  40. Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, Helentjaris TG et al (2014) Transgenic alteration of ethylene biosynthesis increases grainyield in maize under field drought-stress conditions. Plant Biol 12(6):685–693Google Scholar
  41. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683CrossRefPubMedGoogle Scholar
  42. Hart MM, Powell JR, Gulden RH, Dunfield KE, Pauls KP, Swanton CJ, Klironomos JN, Antunes PM, Koch AM, Trevors JT (2009) Separating the effect of crop from herbicide on soil microbial communities in glyphosate-resistant corn. Pedobiologia 52:253–262CrossRefGoogle Scholar
  43. Helle SS, Murray A, Lam J, Cameron DR, Duff SJB (2004) Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol 92:163–171CrossRefPubMedGoogle Scholar
  44. Henley WJ, Novoveská WLL, Duke CS, Quemada HD, Sayre RT (2013) Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res 2:66–77CrossRefGoogle Scholar
  45. Herrera-Estrellla L, De Block M, Messens E, Hernalsteens JP, Van Montaguand M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995Google Scholar
  46. Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68(3):1325–1335CrossRefPubMedPubMedCentralGoogle Scholar
  47. Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jabed A, Wagner S, McCracken J, Wells DN, Laible G (2012) Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. Proc Natl Acad Sci U S A 109:16811–16816CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jacobs MF, Tynkkynen S, Sibakov M (1995) Highly bioluminescent Streptococcus Thermophilus strain for the detection of dairy-relevant antibiotics in milk. Appl Microbiol Biotechnol 44:405–412CrossRefPubMedGoogle Scholar
  50. James C (2014) Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA Brief No. 49. ISAAA, Ithaca, NYGoogle Scholar
  51. Joshi F, Chaudhari A, Joglekar P, Archana G, Desai A (2008) Effect of expression of Bradyrhizobium japonicum 61A152 fegA gene in Mesorhizobium sp., on its competitive survival and nodule occupancy on Arachis hypogea. Appl Soil Ecol 40:338–347CrossRefGoogle Scholar
  52. King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescence reporter technology for naphthalene exposure and biodegradation. Science 249:778–781CrossRefPubMedGoogle Scholar
  53. Kues WA, Niemann H (2011) Advances in farm animal transgenesis. Prev Vet Med 102:146–156CrossRefPubMedGoogle Scholar
  54. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251CrossRefPubMedGoogle Scholar
  55. Lamarche J, Hamelin RC (2007) No evidence of an impact on the rhizosphere diazotroph community by the expression of Bacillus thuringiensis Cry1Ab toxin by Bt white spruce. Appl Environ Microbiol 73:6577–6583CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lan WS, Lu TK, Qin ZF, Shi XJ, Wang JJ, Hu YF, Chen B et al (2014) Genetically modified microorganism Spingomonas paucimobilis UT26 for simultaneously degradation of methyl-parathion and γ-hexachlorocyclohexane. Ecotoxicology 23(5):840–850CrossRefPubMedGoogle Scholar
  57. Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH (1989) Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem 264(11):6427–6437PubMedGoogle Scholar
  58. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefPubMedGoogle Scholar
  59. Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006) Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the coldspoilage of milk. Foodborne Pathog Dis 3:384–392CrossRefPubMedGoogle Scholar
  60. Mandell DJ, Lajoie MJ, Meel MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ et al (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  61. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445CrossRefGoogle Scholar
  62. Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2005) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266:23–39CrossRefGoogle Scholar
  63. Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289CrossRefPubMedGoogle Scholar
  64. Nakatani AS, Fernandes MF, Souza RA, Silva AP, Reis-Junior FB, Mendes IC, Hungria M (2014) Effects of the glyphosate-resistance gene and of herbicides applied to the soybean crop on soil microbial biomass and enzymes. Field Crop Res 162:20–29CrossRefGoogle Scholar
  65. Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222CrossRefPubMedGoogle Scholar
  66. Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK et al (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461CrossRefGoogle Scholar
  67. Pasonen HL, Lu J, Niskanen AM, Seppänen SK, Rytkönen A, Raunio J, Pappinen A et al (2009) Effects of sugar beet chitinase IV on root-associated fungal community of transgenic silver birch in a field trial. Planta 230:973–983CrossRefPubMedGoogle Scholar
  68. Penyalver R, Vicedo B, López MM (2000) Use of genetically engineered Agrobacterium strain K102 for biological control of crown gall. Eur J Plant Pathol 106:801–810CrossRefGoogle Scholar
  69. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefPubMedGoogle Scholar
  70. Quecine MC, Araújo WL, Tsui S, Parra JRP, Azevedo JL, Pizzirani-Kleiner AA (2014) Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Arch Microbiol 196:227–234CrossRefPubMedGoogle Scholar
  71. Rasche F, Hödl V, Poll C, Kandeler E, Gerzabek MH, van Elsas JD, Sessitsch A (2006) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56(2):219–235CrossRefPubMedGoogle Scholar
  72. Romão-Dumaresq AS, Dourado MN, Fávaro LCL, Mendes R, Ferreira A, Araújo WL (2016) Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 11(7):e0158974. doi: 10.1371/journal.pone.0158974 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ro D, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943Google Scholar
  74. Ron EZ (2007) Biosensing environmental pollution. Curr Opin Biotechnol 18:252–256CrossRefPubMedGoogle Scholar
  75. Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM et al (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481CrossRefPubMedGoogle Scholar
  76. Shanahan F (2000) Therapeutic manipulation of gut flora. Science 289:1311–1312CrossRefPubMedGoogle Scholar
  77. Shand H (1989) Bacillus thuringiensis: industry frenzy and a host of issues. J Pestic Reform 9:18–21Google Scholar
  78. Shin HJ (2011) Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol 89:867–877CrossRefPubMedGoogle Scholar
  79. Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brasica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29:263–272CrossRefGoogle Scholar
  80. Siciliano SD, Theoret CM, de Freittas JR, Hucl PJ, Germida JJ (1998) Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can J Microbiol 44:844–851CrossRefGoogle Scholar
  81. Smith MD, Asche F, Guttormsen AG, Wiener JB (2010) Genetically modified salmon and full impact assessment. Science 330:1052–1053CrossRefPubMedGoogle Scholar
  82. Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404CrossRefGoogle Scholar
  83. Steidler L (2003) Genetically engineered probiotics. Best Pract Res Clin Gastroenterol 17:861–876CrossRefPubMedGoogle Scholar
  84. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289(5483):1352–1355CrossRefPubMedGoogle Scholar
  85. Stuart RM, Romão AS, Pizzirani-Kleiner AA, Azevedo JL, Araujo WL (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192:307–313CrossRefPubMedGoogle Scholar
  86. Tabashnik BE, Carrière Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao JZ (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96:1031–1038CrossRefPubMedGoogle Scholar
  87. Tarafdar JC, Rathore I, Shiva V (2012) Effect of Bt-transgenic cotton on soil biological health. Appl Biol Res 14(1):15–23Google Scholar
  88. Tatli F, Gullu M, Ozdemir F (2004) Determination of fungi species, relationships between ear infection rates and fumonisin quantities in Bt maize. Bull OILB 27:161–164Google Scholar
  89. Tavares KC, Dias AC, Lazzarotto CR, Gaudencio Neto S, de Sá CI, Ongaratto FL, Pinto AF et al (2016) Transient expression of functional glucocerebrosidase for treatment of Gaucher’s disease in the goat mammary gland. Mol Biotechnol 58(1):47–55CrossRefPubMedGoogle Scholar
  90. Turner JT, Lampel JS, Stearman RS, Sundin GW, Gunyuzlu P, Anderson JJ (1991) Stability of the D -endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. Cynodontis. Appl Environ Microbiol 57:3522–3528PubMedPubMedCentralGoogle Scholar
  91. Turrini A, Sbrana C, Nuti M, Pietrangeli B, Giovannetti M (2004) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75CrossRefGoogle Scholar
  92. van Berkel PHC, Welling MM, Geerts M, van Veen HA, Ravensbergen B, Salaheddine M, Pauwels EKJ et al (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20:484–487CrossRefPubMedGoogle Scholar
  93. van Elsas JD, Semenov AV, Silva MCP, Salles JF (2015) Lessons of the impact of genetically modified micro-organism on natural ecosystems like soil. In: OECD Biosafety and the environmental uses of micro-organism: conference proceedings. pp 47–56Google Scholar
  94. Vidaver AK, Tolin S, Post A (2012) The status, promise and potential perils of commercially available genetically modified microorganisms in agriculture and the environment. In: Wozniak CA, McHughen A (eds) Regulation of agricultural biotechnology: the United States and Canada. Springer, Dordrecht, pp 95–102CrossRefGoogle Scholar
  95. Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034PubMedPubMedCentralGoogle Scholar
  96. Walter C, Fladung M, Boerjan W (2010) The 20-year environmental safety record of GM trees. Nat Biotechnol 28:656–658CrossRefPubMedGoogle Scholar
  97. Waltz E (2014) Beating the heat. Nat Biotechnol 32(7):610–613CrossRefPubMedGoogle Scholar
  98. Wang S, Ghosha AK, Bongiob N, Stebbingsb KA, Lampeb DJ, Jacobs-Lorena M (2012) Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci U S A 109:12734–12739CrossRefPubMedPubMedCentralGoogle Scholar
  99. Watrud LS, Misra S, Gedamu L, Shiroyama T, Maggard S, Di Giovanni G (2006) Ecological risk assessment of alfalfa (Medicago varia L.) genetically engineered to express a human metallothionein (hMT) gene. Water Air Soil Pollut 176:329–349CrossRefGoogle Scholar
  100. Wei XD, Zhou HL, Chu LM, Liao B, Ye CM, Lan CY (2006) Field released transgenic papaya effect on soil microbial communities and enzyme activities. J Environ Sci (China) 18:734–740Google Scholar
  101. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813CrossRefPubMedGoogle Scholar
  102. Wozniak CA, McHughen A (eds) (2012) Regulation of Agricultural Biotechnology: 57 The United States and Canada. doi: 10.1007/978-94-007-2156-2_4
  103. Wright O, Stan GB, Ellis T (2013) Building-in biosafety for synthetic biology. Microbiology 159:1221–1235CrossRefPubMedGoogle Scholar
  104. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manuela Nobrega Dourado
    • 1
  • Tiago Falda Leite
    • 2
  • Paulo Augusto Viana Barroso
    • 3
  • Welington Luiz Araújo
    • 1
  1. 1.NAP/BIOP, Departamento de MicrobiologiaInstituto de Ciências Biomédicas, Universidade de São Paulo, Biomédicas II, Cidade UniversitáriaSão PauloBrazil
  2. 2.Brazilian Industrial Biotechnology AssociationSão PauloBrazil
  3. 3.EMBRAPA AgroenergiaCampinasBrazil

Personalised recommendations