Advertisement

Translating Endophyte Research to Applications: Prospects and Challenges

  • Trichur Subramanian Suryanarayanan
  • Venkat Gopalan
  • Ramanan Uma Shaanker
  • Anindita Sengupta
  • Gudasalamani Ravikanth

Abstract

The horizontally transmitted fungal endophytes cause symptomless infections of plants. Endophytes synthesize a diverse array of metabolites and enzymes, an attribute that reflects their milieu: the host plant and co-occurring microbes. We illustrate the versatility and utility of endophytes by highlighting examples of how they enhance plant tolerance to abiotic/biotic stressors, produce biomolecules with unique molecular architectures, and elaborate novel enzymes of industrial importance. After considering the challenges that have retarded the translation of these findings to payoffs, we suggest future directions, including the need to understand the ecology and in planta community structure of endophytes, to help fully realize their technological potential.

Keywords

Fungal endophytes Bioactive molecules Stress tolerance Abiotic stress Biotic stress Industrial enzymes Lignocellulosic biomass 

Notes

Acknowledgments

TSS and RUS thank the Department of Biotechnology, Government of India, for funding several research projects on endophytes. VG and AS gratefully acknowledge the support from the Center for Applied Plant Sciences, The Ohio State University.

References

  1. Adsul MG, Terwadkar AP, Varma AJ, Gokhale DV (2009) Cellulases from Penicillium janthinellum mutants: solid-state production and their stability in ionic liquids. Bioresources 4:1670–1681Google Scholar
  2. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82:625–638PubMedCrossRefGoogle Scholar
  3. Arfi Y, Chevret D, Henrissat B, Berrin JG, Levasseur A, Record E (2013) Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp. Nat Commun 4:1810PubMedCrossRefGoogle Scholar
  4. Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398PubMedCrossRefGoogle Scholar
  5. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274CrossRefGoogle Scholar
  6. Aschehoug ET, Callaway RM, Newcombe G, Tharayil N, Chen S (2014) Fungal endophyte increases the allelopathic effects of an invasive forb. Oecologia 175:285–291PubMedCrossRefGoogle Scholar
  7. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295PubMedPubMedCentralCrossRefGoogle Scholar
  8. Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries RP (2011) Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 91:387–397PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bertrand S, Schumpp O, Bohni N, Monod M, Gindro K, Wolfender JL (2013) De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. J Nat Prod 76:1157–1165PubMedCrossRefGoogle Scholar
  10. Bhumika NB, Swapnil MP, Sanjay PG (2016) Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol 120:819–894CrossRefGoogle Scholar
  11. Bier MCJ, Medeiros ABP, Soccol CR (2017) Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol 121(2):137–144. http://dx.doi.org/10.1016/j.funbio.2016.11.003
  12. Bittleston L, Brockmann F, Wcislo W, Van Bael SA (2011) Endophytic fungi reduce leaf-123 cutting ant damage to seedlings. Biol Lett 7:30–32PubMedCrossRefGoogle Scholar
  13. Bogner CW, Kariuki GM, Elashay A, Sichtermann G, Buch AK, Mishra B, Thines M, Grundler FMW, Schouten A (2016) Fungal endophytes of tomato from Kenya their nematode biocontrol potential. Mycol Progress 15:30CrossRefGoogle Scholar
  14. Borges KB, Borges WS, Pupo MT, Bonato PS (2007) Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Appl Microbiol Biotechnol 77:669–674PubMedCrossRefGoogle Scholar
  15. Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448PubMedCrossRefGoogle Scholar
  16. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  17. Bruto M, Prigent-Combaret C, Luis P, Moenne-Loccoz Y, Muller D (2014) Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes. Proc R Soc B Biol Sci 281:20140848CrossRefGoogle Scholar
  18. Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T et al (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 7:e1002051PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chaves FC, Gianfanga TJ, Aneja M, Posada F, Peterson SW, Vega FE (2012) Aspergillus oryzae NRRL 35191 from coffee, a non-toxigenic endophyte with the ability to synthesize kojic acid. Mycol Prog 11:263–267CrossRefGoogle Scholar
  20. Chen Y, Zhai S, Sun Y, Li M, Dong Y, Wang X, Zhang H et al (2015) MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol 16:799–810PubMedCrossRefGoogle Scholar
  21. Chen C, Hu SY, Luo DQ, Zhu SY, Zhou CQ (2016) Potential antitumor agent from the endophytic fungus Pestalotiopsis photiniae induces apoptosis via the mitochondrial pathway in HeLa cells. Oncol Rep 30:1773–1781Google Scholar
  22. Choi YW, Hidgkiss IJ, Hyde KD (2005) Enzyme production by endophytes of Brucea javanica. J Agric Technol 1:55–66Google Scholar
  23. Cord-Landwehr S, Melcher RLJ, Kolkenbrock S, Moerschbacher BM (2016) A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Sci Rep. doi: 10.1038/srep38018 PubMedPubMedCentralGoogle Scholar
  24. Correa RCG, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CGM, Polizeli MDTD, Bracht A, Peralta RM (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478PubMedCrossRefGoogle Scholar
  25. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910PubMedCrossRefGoogle Scholar
  26. Datta S, Holmes B, Park JI, Chen ZW, Dibble DC, Hadi M, Blanch HW et al (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345CrossRefGoogle Scholar
  27. Davies P, Morvan C, Sire O, Baley C (2007) Structure and properties of fibres from sea-grass (Zostera marina). J Mater Sci 42:4850–4857CrossRefGoogle Scholar
  28. de Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Engelmann, LeipzigGoogle Scholar
  29. Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi ecological and chemical perspectives. Fungal Divers 57:45–83CrossRefGoogle Scholar
  30. Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463PubMedCrossRefGoogle Scholar
  31. Estrada C, Degner EC, Rojas EI, Wcislo WT, Van Bael SA (2015) The role of endophyte diversity in protecting plants from defoliation by leaf-cutting ants. Curr Sci 109:55–61Google Scholar
  32. Fesel PH, Zuccaro A (2016) β-glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 90:53–60PubMedCrossRefGoogle Scholar
  33. Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381PubMedCrossRefGoogle Scholar
  34. Gladden JM, Allgaier M, Miller CS, Hazen TC, VerGheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gladden JM, Park JI, Bergmann J, Reyes-Ortiz V, D’haeseleer P, Quirino BF, Sale KL, Simmons BA, Singer SW (2014) Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnol Biofuels 7:15PubMedPubMedCentralCrossRefGoogle Scholar
  36. Govindarajulu MB, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, El Gueddari NE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53CrossRefGoogle Scholar
  37. Govindarajulu MB, Lai LB, Murali TS, Gopalan V, Suryanarayanan TS (2014) Several fungi from fire-prone forests of southern India can utilize furaldehydes. Mycol Prog 13:1049–1056Google Scholar
  38. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guo B, Dai JR, Ng S, Huang Y, Leong C, Ong W, Carté BK (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604PubMedCrossRefGoogle Scholar
  40. Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp. with a possible use for biomass conversion to sugars. Protein Expr Purif 67:61–69PubMedCrossRefGoogle Scholar
  41. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170CrossRefGoogle Scholar
  42. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants enzymes for biofuels production. Science 315:804–807PubMedCrossRefGoogle Scholar
  43. Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U et al (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–474PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 8:e73132. doi: 10.1371/journal.pone.0073132 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173Google Scholar
  47. Hyde KD, Cai L, Cannon PF, Crouch JA, Crous PW, Damm U, Goodwin PH et al (2009) Colletotrichum – names in current use. Fungal Divers 39:147–182Google Scholar
  48. Jing X, Zhang X, Bao J (2009) Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Appl Biochem Biotechnol 159:696–707PubMedCrossRefGoogle Scholar
  49. Johnston-Monje D, Raizada MN (2011) Plant and endophyte relationships: nutrient management. Compr Biotechnol 2:713–727CrossRefGoogle Scholar
  50. Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241–252PubMedCrossRefGoogle Scholar
  51. Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichiapastoris. Protein Expr Purif 58:148–153PubMedCrossRefGoogle Scholar
  52. Kaushik NK, Murali TS, Sahal D, Suryanarayanan TS (2014) A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitol 59:745–757PubMedCrossRefGoogle Scholar
  53. Kavroulakis NS, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864PubMedCrossRefGoogle Scholar
  54. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937–947PubMedCrossRefGoogle Scholar
  55. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:1–14CrossRefGoogle Scholar
  56. Khan AL, Waqas M, Lee IJ (2015a) Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J Plant Res 128:259–268PubMedCrossRefGoogle Scholar
  57. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015b) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74PubMedCrossRefGoogle Scholar
  58. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228PubMedCrossRefGoogle Scholar
  59. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087PubMedCrossRefGoogle Scholar
  60. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  61. Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci U S A 107:4919–4924PubMedPubMedCentralCrossRefGoogle Scholar
  62. Korkama-Rajala T, Mueller MM, Pennanen T (2008) Decomposition and fungi of needle litter from slow- and fast-growing Norway spruce (Picea abies) clones. Microb Ecol 56:76–89PubMedCrossRefGoogle Scholar
  63. Krohn K, Sohrab MH, van Ree T, Draeger S, Schulz B, Antus S, Kurtin T (2008) Biologically active secondary metabolites from fungi Dinemasones A, B and C: new bioactive metabolites from the endophytic fungus Dinemasporium strigosum. Eur J Org Chem 33:5638–5646CrossRefGoogle Scholar
  64. Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775PubMedCrossRefGoogle Scholar
  65. Kusari S, Verma VC, Lamshöft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294Google Scholar
  66. Li JY, Strobel GA, Harper JK, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2:767–770PubMedCrossRefGoogle Scholar
  67. Liberman LM, Benfey PN (2016) A friend in need (of nutrients) is a…. Cell 165:269–271PubMedCrossRefGoogle Scholar
  68. Liu W, Reinscheid UM (2004) Camptothecin-resistant fungal endophytes of Camptotheca acuminate. Mycol Progress 3:189–192CrossRefGoogle Scholar
  69. Liu CZ, Wang F, Stiles AR, Guo C (2012) Ionic liquids for biofuel production: opportunities and challenges. Appl Energy 92:406–414CrossRefGoogle Scholar
  70. Lopez MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131PubMedCrossRefGoogle Scholar
  71. Lopez DC, Zhu-Salzman K, Ek-Ramos MJ, Sword GA (2014) The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9:e103891CrossRefGoogle Scholar
  72. Lopez-Abelairas M, Pallin MA, Salvachua D, Lu-Chau T, Martinez MJ, Lema JM (2013) Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng 36:1251–1260PubMedCrossRefGoogle Scholar
  73. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  74. Margot J, Bennati-Granier C, Maillard J, Blanquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63PubMedPubMedCentralCrossRefGoogle Scholar
  75. Marquez LM, Redman R, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science 315:513–515Google Scholar
  76. Martin-Sampedro R, Fillat U, Ibarra D, Eugenio ME (2015a) Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globules. Bioresour Technol 196:383–390PubMedCrossRefGoogle Scholar
  77. Martin-Sampedro R, Fillat U, Ibarra D, Eugenio ME (2015b) Towards the improvement of Eucalyptus globulus chemical mechanical pulping using endophytic fungi. Int Biodeter Biodegr 105:120–126CrossRefGoogle Scholar
  78. Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Wees SCM (2016) Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol. doi: 10.1111/nph.14251 PubMedGoogle Scholar
  79. Mejía LC, Rojas EI, Maynard Z, Van Bael SA, Arnold AE, Hebbar P, Samuels GJ et al (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14CrossRefGoogle Scholar
  80. Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, Stitt J et al (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic phenotypic expression in a tropical tree. Front Microbiol 5:479. doi: 10.3389/fmicb.2014.00479 PubMedPubMedCentralGoogle Scholar
  81. Mills TY, Soval NR, Gill RT (2009) Cellulosic hydrolysate toxicity tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mohana Kumara P, Shweta S, Vasanth Kumari MM, Sachin N, Manjunath BL, Sagar Jadav S, Ravikanth G et al (2013) Endophytes and plant secondary metabolite synthesis: molecular and evolutionary perspectives. In: Verma V, Gange AC (eds) Advances in endophytic research. Springer, HeidelbergGoogle Scholar
  83. Mohana Kumara P, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Uma Shaanker R (2014) Production of the chromane alkaloid, rohitukine and its attenuation in endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb).Wight & Arn. Phytomedicine 21:541–546PubMedCrossRefGoogle Scholar
  84. Mohandoss J, Suryanarayanan TS (2009) Effect of fungicide treatment on foliar fungal endophyte diversity in mango. Sydowia 61:11–24Google Scholar
  85. Morsy MR, Oswald J, He J, Tang Y, Roossinck MJ (2010) Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Commun 401:225–230PubMedCrossRefGoogle Scholar
  86. Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nagarajan A, Thirunavukkarasu N, Suryanarayanan TS, Gummadi SN (2014) Screening and isolation of novel glutaminase free l-asparaginase from fungal endophytes. Res J Microbiol 9:163–176CrossRefGoogle Scholar
  88. Nilvebrant NO, Reimann A, Larsson S, Jonsson LJ (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91:35–49PubMedCrossRefGoogle Scholar
  89. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59PubMedCrossRefGoogle Scholar
  90. Oakridge National Laboratory (2011) Billion-ton update: biomass supply for a bioenergy and bioproducts industry. US DOE Energy Efficiency Renewal Energy website: https://energy.gov/eere/bioenergy/downloads/us-billion-ton-update-biomass-supply-bioenergy-and-bioproductsindustry. Accessed on 27 March 2017
  91. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  92. Parniske M (2008) Arbuscularmycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  93. Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgari. Fungal Biol 120:783–790PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pel HJ, de Winde JH, Archer DB et al (2007) Genome sequencing analysis of the versatile cell factory Aspergillus niger CBS 51388. Nat Biotechnol 25:221–231PubMedCrossRefGoogle Scholar
  95. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefGoogle Scholar
  96. Pimentel MR, Molina G, Dionísio AP, Maróstica MR Jr, Pastore GM (2011) The use of endophytes to obtain bioactive compounds their application in biotransformation process. Biotechnol Res Int. doi: 10.4061/2011/576286 PubMedGoogle Scholar
  97. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591PubMedCrossRefGoogle Scholar
  98. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315PubMedCrossRefGoogle Scholar
  99. Prakash CP, Thirumalai E, Govindarajulu MB, Thirunavukkarasu N, Suryanarayanan TS (2015) Ecology and diversity of leaf litter fungi during early-stage decomposition in a seasonally dry tropical forest. Fungal Ecol 17:103–113CrossRefGoogle Scholar
  100. Raimbault M (1998) General microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1:174–188CrossRefGoogle Scholar
  101. Reddy SM, Murali TS, Suryanarayanan TS, Govinda Rajulu MB, Thirunavukkarasu N (2016) Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern India. Fungal Ecol 24:70–75CrossRefGoogle Scholar
  102. Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804PubMedPubMedCentralCrossRefGoogle Scholar
  103. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581PubMedCrossRefGoogle Scholar
  104. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823PubMedPubMedCentralCrossRefGoogle Scholar
  105. Robl D, Delabona PD, Mergel CM, Rojas JD, Costa PD, Pimentel IC, Vicente VA et al (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefGoogle Scholar
  107. Rodriguez RJ, Woodward CJ, Redman RS (2012) Fungal influence on plant tolerance to stress. In: Southworth D (ed) Biocomplexity of plant-fungal interactions. Wiley-Blackwell, Oxford, UKGoogle Scholar
  108. Rumbold K, van Buijsen HJJ, Overkamp KM, van Groenestijn JW, Punt PJ, van der Werf MJ (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Factories 8:64CrossRefGoogle Scholar
  109. Sachin N, Manjunatha BL, Mohana Kumara P, Ravikanth G, Shweta S, Suryanarayanan TS, Ganeshaiah KN, Uma Shaanker R (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104:178–182Google Scholar
  110. Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism. Mycol Res 103:1275–1283CrossRefGoogle Scholar
  111. Schulz B, Hass S, Junker C, Andree N, Schobert M (2015) Fungal endophytes are involved in multiple balanced antagonism. Curr Sci 109:39–45Google Scholar
  112. Sherameti I, Tripathi S, Varma A, Oelmüller R (2008a) The root colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant-Microbe Interact 21:799–807PubMedCrossRefGoogle Scholar
  113. Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A et al (2008b) PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 21:799–807Google Scholar
  114. Shweta S, Hima Bindu J, Raghu J, Suma HK, Manjunatha BL, Mohana Kumara P, Ravikanth G et al (2013a) Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd. (Icacinaceae). Phytomedicine 20:13–917Google Scholar
  115. Shweta S, Gurumurthy BR, Ravikanth G, Uma Shaanker R, Shivanna MB (2013b) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, Camptothecin. Phytomedicine 20:337–342PubMedCrossRefGoogle Scholar
  116. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191PubMedPubMedCentralCrossRefGoogle Scholar
  117. Slippers B, Boissin E, Phillips AJL, Groenewald JZ, Lombard L, Wingfield MJ, Postma A et al (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud Mycol 76:31–49PubMedPubMedCentralCrossRefGoogle Scholar
  118. Soliman SSM, Trobacher CP, Tsao R, Greenwood JS, Raizada MN (2013) A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol 13:93PubMedPubMedCentralCrossRefGoogle Scholar
  119. Song M, Li X, Saikkonen K, Li C, Nan Z (2015) An asexual Epichloe endophyte enhances waterlogging tolerance of Hordeum brevisubulatum. Fungal Ecol 13:44–53CrossRefGoogle Scholar
  120. Stinson M, Ezra D, Hess WM, Sears J, Strobel GA (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922CrossRefGoogle Scholar
  121. Strobel GA (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244PubMedCrossRefGoogle Scholar
  122. Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin a potent and antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926PubMedCrossRefGoogle Scholar
  123. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017PubMedCrossRefGoogle Scholar
  124. Suryanarayanan TS (2011) Diversity of fungal endophytes in tropical trees. In: Pirttilä AM, Carolin F (eds) Endophytes of forest trees, Forestry sciences series, vol 80. Springer, New York, USAGoogle Scholar
  125. Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568CrossRefGoogle Scholar
  126. Suryanarayanan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomless leaves of peanut in southern India. J Basic Microbiol 46:305–309PubMedCrossRefGoogle Scholar
  127. Suryanarayanan TS, Thennarasan S (2004) Temporal variation in endophyte assemblages of Plumeria rubra leaves. Fungal Divers 15:195–202Google Scholar
  128. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19CrossRefGoogle Scholar
  129. Suryanarayanan TS, Murali TS, Thirunavukkarasu N, Govindarajulu MB, Venkatesan G, Sukumar R (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India. Biodivers Conserv 20:913–928CrossRefGoogle Scholar
  130. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30CrossRefGoogle Scholar
  131. Suryanarayanan TS, Gopalan V, Sahal D, Sanyal K (2015) Establishing a national fungal genetic resource to enhance the bioeconomy. Curr Sci 109:1033–1037CrossRefGoogle Scholar
  132. Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93:88–90PubMedCrossRefGoogle Scholar
  133. Szink I, Davis EL, Ricks KD, Koide RT (2016) New evidence for broad trophic status of leaf endophytic fungi of Quercus gambelii. Fungal Ecol 22:2–9CrossRefGoogle Scholar
  134. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedCrossRefGoogle Scholar
  135. Thirunavukkarasu N, Jahnes B, Broadstock A, Govindarajulu MB, Murali TS, Gopalan V, Suryanarayanan TS (2015) Screening marine-derived endophytic fungi for xylan-degrading enzymes. Curr Sci 109:112–120Google Scholar
  136. Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A 106:22157–22162PubMedPubMedCentralCrossRefGoogle Scholar
  137. Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5:443–447CrossRefGoogle Scholar
  138. Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11PubMedCrossRefGoogle Scholar
  139. Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184PubMedCrossRefGoogle Scholar
  140. van Bael SA, Fernández-Marín H, Valencia MC, Rojas EI, Wcislo WT, Herre EA (2009) Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant 134 gardens. Proc R Soc B Biol Sci 276:2419CrossRefGoogle Scholar
  141. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492PubMedPubMedCentralCrossRefGoogle Scholar
  142. van Overbeek LS, Saikkonen K (2016) Impact of bacterial-fungal interactions on the colonization of the endosphere. Trends Plant Sci. doi: 10.1016/j.tplants.2016.01.003 PubMedGoogle Scholar
  143. van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaff LH (1998) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619PubMedPubMedCentralGoogle Scholar
  144. Vasanthakumari MM, Jadhav SS, Sachin N, Vinod G, Shweta S, Manjunatha BL, Mohana Kumara P et al (2015) Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J Microbiol Biotechnol. doi: 10.1007/s11274-015-1916-0 PubMedGoogle Scholar
  145. Verza M, Arakawa NS, Lopes NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis sp. J Braz Chem Soc 20:195–200CrossRefGoogle Scholar
  146. Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486PubMedCrossRefGoogle Scholar
  147. Wang XN, Zhang XL, Liu L, Xiang MC, Wang WZ, Sun X, Che YS et al (2015a) Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics 16:28PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wang X, Gao Q, Bao J (2015b) Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment. Biotechnol Biofuels 8:136PubMedPubMedCentralCrossRefGoogle Scholar
  149. Waqas M, Khan AL, Muhammad H, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287CrossRefGoogle Scholar
  150. Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 92:1095–1105PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299PubMedCrossRefGoogle Scholar
  152. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544PubMedPubMedCentralCrossRefGoogle Scholar
  153. Yang B, Dai Z, Ding SY, Wyman CE (2008) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450CrossRefGoogle Scholar
  154. Yang HY, Wang K, Wang W, Sun RC (2013) Improved bioconversion of poplar by synergistic treatments with white-rot fungus Trametes velutina D10149 pretreatment and alkaline fractionation. Bioresour Technol 130:578–583PubMedCrossRefGoogle Scholar
  155. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79:4620–4634PubMedPubMedCentralCrossRefGoogle Scholar
  156. Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, Vilella D et al (1999) Discovery of small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–981PubMedCrossRefGoogle Scholar
  157. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771PubMedCrossRefGoogle Scholar
  158. Zhang Y, Mu J, Feng Y, Kang Y, Zhang J, Gu P, Wang Y et al (2009) Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Mar Drugs 7:97112Google Scholar
  159. Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3:26PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zheng YB, Yu XC, Zeng JJ, Chen SL (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5:50PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P et al (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Trichur Subramanian Suryanarayanan
    • 1
  • Venkat Gopalan
    • 2
  • Ramanan Uma Shaanker
    • 3
  • Anindita Sengupta
    • 2
  • Gudasalamani Ravikanth
    • 4
  1. 1.Vivekananda Institute of Tropical Mycology (VINSTROM)ChennaiIndia
  2. 2.Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusUSA
  3. 3.Department of Crop Physiology and School of Ecology and ConservationUniversity of Agricultural SciencesBengaluruIndia
  4. 4.Ashoka Trust for Research in Ecology and the Environment, Royal EnclaveBengaluruIndia

Personalised recommendations