Advertisement

Beneficial Microorganisms Associated with Sugarcane Crops: The Green Gold for Clean Energy

  • Aline Silva Romão-Dumaresq
  • Henrique Coutinho Junqueira Franco
  • Bernardo Melo Montes Nogueira Borges
  • Bruna Durante Batista
  • Maria Carolina Quecine
Chapter

Abstract

Sugarcane is currently the economic basis of more than 100 countries, planted on over 25 million hectares worldwide. It has been considered one of the most promising crops for generating clean and renewable energy and is expected to become the second largest energy source in the world by 2030. The global production of this crop is continuously growing, mostly because of the rising consumption of sugar and ethanol. Increases in both crop area plantations and yield are occurring to meet the growing demand. As sugarcane plants establish associations with a great diversity of microorganisms during their life cycle, the use of beneficial fungi and bacteria as a complementary tool to improve plant yield has arisen as a powerful option to meet the current needs to increase productivity and sustainability. However, despite the economic importance of sugarcane, knowledge regarding the microbial community associated with this crop is still limited, as there is still a lack of information on the real diversity and roles of fungal and bacterial species. Current knowledge on sugarcane mycobiota has revealed Epicoccum, Trichoderma, and arbuscular mycorrhizae fungi as the main beneficial fungal agents with high potential for use as microbial-based biostimulants, leading to positive effects that include growth promotion, plant protection, stress resistance, and improved nutrient acquisition. The most studied plant growth-promoting bacteria (PGPB) associated with sugarcane include representatives of the genera Beijerinckia, Gluconacetobacter, Herbaspirillum, Burkholderia, and Azospirillum. The most significant effect obtained from the interaction of sugarcane with these PGPBs is the reduction of chemical nitrogen fertilizers, as these bacteria are able to convert atmospheric nitrogen into an available source, ammonium. Therefore, the use of microbial inoculants should be maximized in crop production, as there is strong evidence that sugarcane plants are able to grow more efficiently by establishing interactions with beneficial microorganisms. This chapter presents an overview on sugarcane production worldwide and gathers the main information about fungi and bacteria described as beneficial to sugarcane, as well as recent data on its complex microbiome.

Keywords

Sugarcane Fungus Bacteria PGPB Trichoderma Epicoccum Mycorrhizae Beijerinckia Gluconacetobacter Microbiome 

References

  1. Abdel-Rahim AM, Baghadadi AM, Abdalla MH (1983) Studies on fungus flora in the rhizosphere of sugarcane plants. Mycopathologia 81:183–186CrossRefGoogle Scholar
  2. Abdullah SK, Saleh YA (2010) Mycobiota associated with sugarcane (Saccharum officinarum L.) cultivars in Iraq. Jordan J Biol Sci 3:193–202Google Scholar
  3. Ahmed AS, Sánchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824CrossRefGoogle Scholar
  4. Allison JCS, Pammenter NW, Haslam RJ (2007) Why does sugarcane (Saccharum sp. hybrid) grow slowly? S Afr J Bot 73:546–551CrossRefGoogle Scholar
  5. Alves SB (1986) Controle Microbiano de Insectos. Manole, São PauloGoogle Scholar
  6. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180PubMedCrossRefGoogle Scholar
  7. Araújo FDS, Fávaro LCL, Araújo WL, Oliveira FL, Aparicio R, Marsaioli AJ (2012) Epicolactone – natural product isolated from the sugarcane endophytic fungus Epicoccum nigrum. Eur J Org Chem 27:5225–5230CrossRefGoogle Scholar
  8. Azeredo LA, Gomes EA, Mendonça-Hagler LC, Hagler AN (1998) Yeast communities associated with sugarcane in Campos, Rio de Janeiro, Brazil. Int Microbiol 1:205–208PubMedGoogle Scholar
  9. Bae H, Roberts DP, Lim H-S, Strem M, Park S-C, Ryu C-M, Melnick R et al (2011) Endophytic Trichoderma isolates from tropical environments delay disease and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351PubMedCrossRefGoogle Scholar
  10. Bailey BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ, Vinyard BT et al (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46:24–35CrossRefGoogle Scholar
  11. Baldani VLD, Baldani JI, Olivares FL, Dobereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73Google Scholar
  12. Baldani JI, Reis VM, Baldani VL, Döbereiner J (2002) Review: a brief story of nitrogen fixation in sugarcane – reasons for success in Brazil. Funct Plant Biol 29:417–423CrossRefGoogle Scholar
  13. Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11CrossRefGoogle Scholar
  14. Baute MA, Deffieux G, Baute R, Neveu A (1978) New antibiotics from the fungus Epicoccum nigrum. I. Fermentation, isolation and antibacterial properties. J Antibiot 31:1099–1105PubMedCrossRefGoogle Scholar
  15. Bell PJL, Karuso P (2003) Epicoccone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125:9304–9305PubMedCrossRefGoogle Scholar
  16. Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260PubMedGoogle Scholar
  17. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, França L (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:1CrossRefGoogle Scholar
  18. Blackburn F (1984) Sugarcane. Longman Ltd, HarlowGoogle Scholar
  19. Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149CrossRefGoogle Scholar
  20. Butt TM, Brownbridge M (2001) Increasing the efficacy of entomogenous fungi. In: Vurro M et al (eds) Proceedings of the NATO advanced research workshop on enhancing biocontrol agents and handling risks. IOS Press, FlorenceGoogle Scholar
  21. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Estrada-De Los Santos P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Micr 54:1165–1172CrossRefGoogle Scholar
  22. Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319PubMedPubMedCentralCrossRefGoogle Scholar
  23. Camatti-Sartori V, da Silva-Ribeiro RT, Valdebenito-Sanhueza RM, Pagnocca FC, Echeverrigaray S, Azevedo JL (2005) Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. J Basic Microb 45:397–402CrossRefGoogle Scholar
  24. Castro-Gonzalez R, Martinez-Aguilar L, Ramirez-Trujillo A, Estrada-de los Santos P, Caballero-Mellado J (2011) High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345:155–169CrossRefGoogle Scholar
  25. Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31CrossRefGoogle Scholar
  26. Cesnik R, Miocque J (2004) Melhoramento da cana-de-açúcar. Embrapa, BrasíliaGoogle Scholar
  27. Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enzymes. Taylor & Francis, LondonGoogle Scholar
  28. Colla G, Rouphael Y, Bonini P, Cardarelli M (2015) Coating seeds with endophytic fungi enhances growth nutrient uptake, yield and grain quality of winter wheat. Int J Plant Prod 9:171–190Google Scholar
  29. Conab (2016) Séries históricas de área plantada, produtividade e produção, relativas às safras 1976/77 a 2015/16 de grãos, 2001 a 2016 de café, 2005/06 a 2016/17 de cana-de-açúcar. http://www.conab.gov.br/conteudos.php?a=1252&. Accessed 29 Sept 2016
  30. Contreras-Cornejo HA, Macías-Rodríguez LI, López-Bucio JS, López-Bucio J (2014) Enhanced plant immunity using Trichoderma. In: Gupta VK, Schmoll M, Herrera-Estrella A (eds) Biotechnology and biology of Trichoderma. Elsevier B.V, AmsterdamGoogle Scholar
  31. Contreras-Cornejo HA, Ortiz-Castro R, López-Bucio J (2013) Promotion of plant growth and the induction of systemic defense by Trichoderma: physiology, genetics and gene expression. In: Mukherjee P, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CAB International, BostonGoogle Scholar
  32. Cortez LAB, Leal MRLV, Nassar AM, Moreira MMR, Feldman S, Taube-Netto M et al (2014) Land requirements for producing ethanol in brazil. In: Cortez LAB (coord.) Sugarcane bioethanol — R&D for Productivity and Sustainability. Edgard Blücher, São PauloGoogle Scholar
  33. Datta P, Kulkarni M (2012) Arbuscular mycorrhizal fungal diversity in sugarcane rhizosphere in relation with soil properties. Not Sci Biol 4:66–74Google Scholar
  34. De Cal A, Larena I, Linan M, Torres R, Lamarca N, Usall J, Domenichini P et al (2009) Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. J Appl Microbiol 106:592–605PubMedCrossRefGoogle Scholar
  35. De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286CrossRefGoogle Scholar
  36. De Souza JT, Bailey BA, Pomella AWV, Erbe EF, Murphy CA, Bae H, Hebbar PK (2008) Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biol Control 46:36–45CrossRefGoogle Scholar
  37. Deshmukh RB, Dange SS, Jadhav PV, Deokule SS, Patil NA (2013) Studies on the mycoflora in the rhizosphere of sugarcane (Saccharum officinarum L.) Int J Bioassays 2:674–6r76Google Scholar
  38. Dinardo-Miranda LL, Vasconcelos ACM, Ferreira JMG, Garcia JRCA, Coelho AL, Gil MA (2004) Eficiência de Metarhizium anisopliae (Metsch.) no controle de Mahanarva fimbriolata (Stál) (Hemiptera: Cercopidae) em cana-de-açúcar. Neotrop Entomol 33:743–749CrossRefGoogle Scholar
  39. Dini-Andreote F, Andreote FD, Costa R, Taketani RG, van Elsas JD, Araújo WL (2010) Bacterial soil community in a Brazilian sugarcane field. Plant Soil 336:337–349CrossRefGoogle Scholar
  40. Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889PubMedPubMedCentralCrossRefGoogle Scholar
  41. Döbereiner J (1959) Sobre a ocorrência de Beijerinckia em alguns solos do Brasil. Rev Bras Biol 19:151–160Google Scholar
  42. Döbereiner J (1961) Nitrogen fixing bacteria of the genus Beijerinckia Drex. In the rhizosphere of sugarcane. Plant Soil 15:211–216CrossRefGoogle Scholar
  43. Döbereiner J, Day JM, Dart PJ (1973) Fixação de nitrogênio na rizosfera de Paspalum notatum e da cana-de-açúcar. Pesq Agropec Bras Ser Agron 8:153–157Google Scholar
  44. Döbereiner J, Ruschel AP (1958) Uma nova espécie de Beijerinckia. Revista de Biologia 1:261–272Google Scholar
  45. El-Amin NA, Saadabi S (2007) Contribution to the knowledge of soil fungi in Sudan rhizosphere mycoflora of sugarcane at Kenana sugar state. Int J Botany 3:97–102CrossRefGoogle Scholar
  46. Evans HC, Holmes KA, Thomas SE (2003) Mycobiota of an indigenous Theobroma species (Sterculiaceae) in Ecuador: assessing its potential for biological control of cocoa diseases. Mycol Prog 2:149–160CrossRefGoogle Scholar
  47. FAO (2016) FAOSTAT beta. Food Agric. Data. http://faostat.fao.org/beta/en/#home. Accessed 16 Oct 2016
  48. Fávaro LCL, Sebastianes FLS, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7:e36826PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L). New Phytol 120:137–143CrossRefGoogle Scholar
  50. Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502CrossRefGoogle Scholar
  51. Frederick CB, Szaniszlo PJ, Vickerey PE, Bentley MD, Shive W (1981) Production and isolation of siderophores from the soil fungus Epicoccum purpurascens. Biochemistry 20:2432–2436PubMedCrossRefGoogle Scholar
  52. Fuentes-Ramírez L, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154:145–150CrossRefGoogle Scholar
  53. Garside A, Bell M (2007) The value of legume breaks to the sugarcane cropping system-cumulative yields for the next cycle, potential cash returns from the legume, and duration of the break effect. Proc Conf Aust Soc Sugar Cane Technol 29:1–10Google Scholar
  54. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:96340CrossRefGoogle Scholar
  55. Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6PubMedPubMedCentralCrossRefGoogle Scholar
  56. Govindarajan M, Kwon SW, Weon HY (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microb Biot 23:997–1006CrossRefGoogle Scholar
  57. Hanada RE, Souza TD, Pomella AWV, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. Nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343PubMedCrossRefGoogle Scholar
  58. Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:71–176CrossRefGoogle Scholar
  59. Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393CrossRefGoogle Scholar
  60. Harman GE (2011) Multifunctional fungal plant symbionts. New Phytol 189:649–652CrossRefGoogle Scholar
  61. Harman GE, Kubicek CP (1998) Trichoderma and Gliocladium: enzymes, biological control and commercial applications. Taylor & Francis, LondonGoogle Scholar
  62. Hashem M, Ali E (2004) Epicoccum nigrum as biocontrol agent of Pythium damping-off and root-rot of cotton seedlings. Arch Phytopathol PFL 37:283–297CrossRefGoogle Scholar
  63. Hassan MN, Afghan S, Hassan ZU, Hafeez FY (2014) Biopesticide activity of sugarcane associated rhizobacteria: Ochrobactrum intermedium strain NH-5 and Stenotrophomonas maltophilia strain NH-300 against red rot under field conditions. Phytopathol Mediterr 53:229Google Scholar
  64. Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor & Francis, LondonGoogle Scholar
  65. Ikawa M, Mcgrattan CJ, Burge WR, Iannitelli RC (1978) Epirodin, a polyene antibiotic from the mold Epicoccum nigrum. J Antibiot 31:159–161PubMedCrossRefGoogle Scholar
  66. Inman-Bamber G (2014) Sugarcane yields and yield-limiting processes. In: Moore P, Botha F (eds) Sugarcane: physiology, biochemistry and functional biology. Wiley, ChichesterGoogle Scholar
  67. Jamal SF, Cadet P, Rutherford RS, Straker CJ (2004) Effect of mycorrhiza on the nutrient uptake of sugarcane. Proc S Afr Sug Technol Ass 78: 343–348Google Scholar
  68. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209CrossRefGoogle Scholar
  69. Joris HAW (2015) Nitrogênio na produção de cana-de-açúcar: aspectos agronômicos e ambientais. Dissertation, Instituto Agronômico de CampinasGoogle Scholar
  70. Kariman KH, Goltapeh EM, Minassian V (2005) Arbuscular mycorrhizal fungi from Iran. J Agri Tech 1:301–313Google Scholar
  71. Kassab SO, Loureiro ES, Rossoni C, Pereira FF, Mota TH, Barbosa RH, Costa PC (2015) Control of Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) with entomopathogenic fungus and insecticides using two sampling methods on sugarcane fields. Afr J Agric Res 10:803–810CrossRefGoogle Scholar
  72. Kelly RM, Edwards DG, Thompson JP, Magarey RC (2001) Responses of sugarcane, maize, and soybean to phosphorus and vesicular-arbuscular mycorrhizal fungi. Aust J Agric Res 52:731–743CrossRefGoogle Scholar
  73. Klein D, Eveleigh DE (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: basic biology, taxonomy and genetics. Taylor & Francis, LondonGoogle Scholar
  74. Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur J Plant Pathol 107:523–533CrossRefGoogle Scholar
  75. Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on south-east Asian isolates. Fungal Genet Biol 38:310–319PubMedCrossRefGoogle Scholar
  76. Kumalawati Z, Musa Y, Amin N, Asrul L, Ridwan I (2014) Exploration of arbuscular mycorrhizal fungi from sugarcane rhizosphere in South Sulawesi. Int J Sci Technol Res 3(1): 201–203Google Scholar
  77. Lal RJ, Sinha OK, Bhatbagar S, Lal S et al (2009) Biological control of sugarcane smut (Sporiosorium scitamineum) through botanicals and Trichoderma viridie. Sugar Tech 11:381–386CrossRefGoogle Scholar
  78. Larran S, Perello A, Simon MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.) World J Microb Biot 23:565–572CrossRefGoogle Scholar
  79. Lederberg J, McCray AT (2001) Ome sweet: omics—a genealogical treasury of words. Scientist 15:8Google Scholar
  80. Lee JIE, Eom AH (2009) Effect of organic farming on spore diversity of arbuscular mycorrhizal fungi and glomalin in soil. Mycology 37:272–276Google Scholar
  81. López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 30:109–123CrossRefGoogle Scholar
  82. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol 48:395–417PubMedCrossRefGoogle Scholar
  83. Luvizotto D, Marcon J, Andreote F, Dini-Andreote F, Neves A, Araújo W, Pizzirani-Kleiner A (2010) Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microb Biot 26:1829–1836CrossRefGoogle Scholar
  84. Magarey RC, Bull JI, Reghenzani JR (2005) The influence of vesicular arbuscular mycorrhizae (VAM) on sugarcane growth in the field. Proc Aust Soc Sugarcane Technol 27:282–290Google Scholar
  85. Magnani GS, Didonet CM, Cruz LM, Picheth CF et al (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258PubMedCrossRefGoogle Scholar
  86. Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan R, Osler R (2009) DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis 93:993–998CrossRefGoogle Scholar
  87. Mehnaz S (2013) Microbes–friends and foes of sugarcane. J Basic Microb 53:954–971CrossRefGoogle Scholar
  88. Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microb Biot 20:1614–1623CrossRefGoogle Scholar
  89. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267PubMedPubMedCentralCrossRefGoogle Scholar
  90. Meyer J, Clowes M (2013) Sugarcane and its environment. In: Meyer J, Rein P, Turner P, Mathias K (eds) Good management practices for the cane sugar industry. Bartens, BerlinGoogle Scholar
  91. Mulaw TB, Kubicek CP, Druzhinina IS (2010) The rhizosphere of Coffea arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Fungal Divers 2:527–549CrossRefGoogle Scholar
  92. Musetti R, Grisan S, Polizzotto R, Martini M, Paduano C, Osler R (2011) Interactions between ‘Candidatus Phytoplasma mali’ and the apple endophyte Epicoccum nigrum in Catharanthus roseus plants. J Appl Microbiol 110:746–756PubMedCrossRefGoogle Scholar
  93. Nasim G, Ali A, Munawar A, Bajwa R (2008) Seasonal dynamics of AM fungi in sugarcane (Saccharum officinarum L. cv. Spf-213) in relation to red rot (Colletotrichum falcatum) disease from Punjab, Pakistan. Pak J Bot 40:2587–2600Google Scholar
  94. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694PubMedCrossRefGoogle Scholar
  95. Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirilium. New Phytol 135:723–737CrossRefGoogle Scholar
  96. Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590PubMedPubMedCentralCrossRefGoogle Scholar
  97. Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Webb RI, Lakshmanan P, Chan CX, Lim PE et al (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microbial Biotech doi 7:142–154. doi: 10.1111/1751-7915.12105
  98. Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35PubMedCrossRefGoogle Scholar
  99. Peterson J, Garges S et al (2009) The NIH Human Microbiome Project. Genome Res 19:2317–2323Google Scholar
  100. Photita W, Lumyong S, Lumyong P, Hyde KD (2001) Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycol Res 105:1508–1513CrossRefGoogle Scholar
  101. Pieckenstain FL, Bazzalo ME, Roberts AMI, Ugalde RA (2001) Epicoccum purpurascens for biocontrol of Sclerotinia head rot of sunflower. Mycol Res 105:77–84Google Scholar
  102. Prabudoss V (2011) Interaction of AM fungi and sugarcane (Saccharum officinarum L.) Int J Curr Res 3:228–234Google Scholar
  103. Procópio REL, Araújo WL, Maccheroni W Jr, Azevedo JL (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res 8:1408–1422PubMedCrossRefGoogle Scholar
  104. Quecine MC, Araújo WL, Tsui S, Parra JRP, Azevedo JL, Pizzirani-Kleiner AA (2014) Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Arch Microbiol 196:227–234PubMedCrossRefGoogle Scholar
  105. Quecine MC, Araújo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M et al (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–7518PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rameshkumar N, Ayyadurai N, Kayalvizhi N, Gunasekaran P (2012) Genotypic and phenotypic diversity of PGPR fluorescent pseudomonads isolated from the rhizosphere of sugarcane (Saccharum officinarum L.) J Microbiol Biotechnol 22:13–24PubMedCrossRefGoogle Scholar
  107. Reddy CN, Bharati BK, Rajkumar HG, Sunanda DN (2004) Infectivity and efficacy of four native vesicular-arbuscular mycorrhiza fungi on sugar cane (cv. CO 419). Mycorrhiza News 16:9–11Google Scholar
  108. Reis VM, de Paula MA, Döbereiner J (1999) Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar. Pesq Agropec Bras 34:1933–1941CrossRefGoogle Scholar
  109. Reis VM, Estrada-De Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S et al (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Micr 54:2155–2162CrossRefGoogle Scholar
  110. Rokni N, Goltapeh ME, Alizadeh A (2010) Some new recorded species of arbuscular mycorrhizal fungi associated with sugarcane crop in Iran. J Agri Tech 6:67–78Google Scholar
  111. Romão-Dumaresq AS, de Araújo WL, Talbot NJ, Thornton CR (2012) RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7:e47888PubMedPubMedCentralCrossRefGoogle Scholar
  112. Romão-Dumaresq AS, Dourado MN, Fávaro LC, Mendes R, Ferreira A, Araújo WL (2016) Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 11:e0158974PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rosenblueth M, Martine L, Silva J, Martino-Romeraz E (2004) Klebsiella variicola, a novel species with clinical and plant associated isolates. Syst Appl Microbiol 27:27–35PubMedCrossRefGoogle Scholar
  114. Roth G (1971) The effects of filtercake on soil fertility and yield of sugarcane. Proc S Afr Sug Technol Ass 45:142–148Google Scholar
  115. Sankaranarayanan C, Hari K (2013) Bio-management of root knot nematode Meloidogyne javanica in sugarcane by combined application of arbuscular mycorrhizal fungi and nematophagous fungi. J Sugarcane Res 3:62–70Google Scholar
  116. Seabra JEA, Macedo IC, Chum HL, Faroni CE, Sarto CA (2011) Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioprod Biorefin 5:519–532CrossRefGoogle Scholar
  117. Shankariah C, Hunsigi G (2001) Field responses of sugarcane to associative N2 fixers and P solubilisers. In: International society of sugar cane technologists congress Brisbane proceedings. ISSCT, Brisbane, pp 40–45Google Scholar
  118. Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693PubMedCrossRefGoogle Scholar
  119. Shoresh M, Mastouri F, Harman GE (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedCrossRefGoogle Scholar
  120. Shu YZ, Ye Q, Li H, Kadow KF, Hussain RA, Huang S, Gustavson DR, Lowe SE, Chang LP, Pimik DM, Kodukula K (1997) Orevactaene, a novel binding inhibitor of HIV-1 rev protein to Rev response element (RRE) from Epicoccum nigrum WC47880. Bioorg Med Chem Lett 7:2295–2298Google Scholar
  121. Sieverding E (1991) Vesicular arbuscular mycorrhiza management in tropical agrosystems. Technical coorperation (GTZ) Eschborn. Friedland, Bremen, Rossdorf, TZVerlagsgesellchaft, GermanyGoogle Scholar
  122. Silva MO, Freire FJE, Kuklinsky-Sobral JU, de Oliveira EICIA, Freire MBGS, Apolinário VEXO (2016) Bacteria associated with sugarcane in northeastern Brazil. Afr J Microbiol Res 10:1586–1594CrossRefGoogle Scholar
  123. Singh AP, Lal RJ, Awasthi SK (2009) Integrated management strategies for red rot disease of sugarcane. Sugar Tech 11:300CrossRefGoogle Scholar
  124. Singh KP, Suman A, Singh PN, Lal M (2007) Yield and soil nutrient balance of a sugarcane plant–ratoon system with conventional and organic nutrient management in sub-tropical India. Nutr Cycl Agroecosyst 79:209–219CrossRefGoogle Scholar
  125. Singh V, Srivastava SN, Lal RJ, Awasthi SK, Joshi BB (2008) Biological control of red rot disease of sugarcane through Trichoderma harzianum and Trichoderma viride. Indian Phytopathol 61:486–493Google Scholar
  126. Siqueira JO, Franco AA (1988) Biotecnologia do solo: fundamentos e perspectivas. MEC/ABEAS/Lavras: ESAL/FAEPE, BrasíliaGoogle Scholar
  127. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  128. Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Silva MJ, González-Guerrero M, Araújo LM et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774PubMedPubMedCentralCrossRefGoogle Scholar
  129. Srikumar R, Murugaian P, Thangaraj R (2009) Survey of arbuscular mycorrhizal fungi associated with sugarcane in South India. Agric Sci Digest 29:19–22Google Scholar
  130. Stuart RM, Romão AS, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192:307–313PubMedCrossRefGoogle Scholar
  131. Surendran U, Vani D (2013) Influence of arbuscular mycorrhizal fungi in sugarcane productivity under semiarid tropical agro ecosystem in India. Int J Plant Prod 7(2):269–278Google Scholar
  132. Suresh N, Nelson R (2015) Diversity of arbuscular mycorrhizal fungi (AMF) in the rhizosphere of sugarcane. Eur J Experimental Biol 5:13–19Google Scholar
  133. Tailor AJ, Joshi B (2012) Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. J Environ Res Dev 6:688–694Google Scholar
  134. Talukder M, Begum F, Azad M (2007) Management of pinapple disease of sugarcane through biological means. J Agric Rural Dev 5:79–83Google Scholar
  135. Tejera N, Lluch C, Martinez-Toledo MV, Gonzalez-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232CrossRefGoogle Scholar
  136. Tolmasquim M, Guerreiro A, Gorini R (2007) Matriz energética brasileira: uma prospectiva. Novos estud. CEBRAP, 79. doi:  10.1590/S0101-33002007000300003
  137. Unica (2016) Mapa de produção. Setor Sucroenergético / Mapa produção. http://www.unica.com.br/mapa-da-producao/. Accessed 1 Oct 2016
  138. Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970-2100 period: a scenario analysis of resource depletion. Glob Environ Chang 20:428–439CrossRefGoogle Scholar
  139. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20CrossRefGoogle Scholar
  140. Videira SS, de Oliveira DM, de Morais RF, Borges WL, Baldani VLD, Baldani JI (2012) Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. Genotypes grown in the field. Plant Soil 356:51–66CrossRefGoogle Scholar
  141. Visalakshi M, Bhavani B, Govinda Rao S (2015) Field evaluation of entomopathogenic fungi against white grub, Holotrichia consanguinea blanch in sugarcane. J Biol Control 29:103–106CrossRefGoogle Scholar
  142. Viterbo ADA, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746PubMedCrossRefGoogle Scholar
  143. Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276PubMedCrossRefGoogle Scholar
  144. Wardle DA, Parkinson D, Waller JE (1993) Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia 94:165–172PubMedCrossRefGoogle Scholar
  145. Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents: progress, problems and potential. CABI Publishing, WallingfordGoogle Scholar
  146. Wright AD, Osterhage C, König GM (2003) Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Org Biomol Chem 1:507–510PubMedCrossRefGoogle Scholar
  147. Yadava RL, Sumanb A, Prasadc SR, Prakashd O (2009) Effect of Gluconacetobacter diazotrophicus and Trichoderma viride on soil health, yield and N-economy of sugarcane cultivation under subtropical climatic conditions of India. Europ J Agronomy 30:296–303CrossRefGoogle Scholar
  148. Zhang CL, Liu SP, Lin F, Kubicek CP, Druzhinina IS (2007a) Trichoderma taxi sp.nov., an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiol Lett 270:90–96PubMedCrossRefGoogle Scholar
  149. Zhang Y, Liu S, Che Y, Liu X (2007b) Epicoccins A–D, epipolythiodioxopiperazines from a Cordyceps-colonizing isolate of Epicoccum nigrum. J Nat Prod 70:1522–1525PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Aline Silva Romão-Dumaresq
    • 1
  • Henrique Coutinho Junqueira Franco
    • 2
  • Bernardo Melo Montes Nogueira Borges
    • 2
  • Bruna Durante Batista
    • 3
  • Maria Carolina Quecine
    • 3
  1. 1.SENAI Innovation Institute for BiosyntheticsNational Service of Industrial Training, Technology Center of the Chemical and the Textile Industry - SENAI CETIQTRio de JaneiroBrazil
  2. 2.Brazilian Bioethanol Science and Technology Laboratory – CTBE, National Center of Energy and Material Research – CNPEMCampinasBrazil
  3. 3.Department of Genetics“Luiz de Queiroz” College of Agriculture, University of São PauloPiracicabaBrazil

Personalised recommendations