Diversity and Importance of Diazotrophic Bacteria to Agricultural Sustainability in the Tropics

  • Glaciela KaschukEmail author
  • Mariangela Hungria


The N2-fixing (diazotrophic) bacteria reduce atmospheric nitrogen (N2) into NH3 by means of the enzymatic complex of the nitrogenase and proliferate in a broad range of environments with different lifestyles. Considering their strategies in agricultural systems, diazotrophic bacteria are classified in four groups: soil free-living, rhizospheric associative, endophytic, and symbiotic nodule-formers. The soil free-living group plays a key role in the soil organic matter cycling. The associative (living on root surfaces) and endophytic (living in inner plant parts) groups establish reciprocal relationships with plants, usually resulting in plant growth promotion. The nodule-forming bacteria, with an emphasis on rhizobia that associate with legumes, represent the most effective group in supplying N to agricultural systems. However, despite significant advances in our understanding of the diversity of diazotrophic bacteria achieved in the last decades, it is true to say that the use of these microorganisms to improve agriculture sustainability is still poorly explored in view of their great potential.


Azospirillum Biological nitrogen fixation Inoculant Legume crops Nitrogenase Rhizobia Symbiosis 


  1. Araújo FF, Hungria M (1999) Nodulação e rendimento de soja co-inoculada com Bacillus subtilis e Bradyrhizobium japonicum/B. elkanii. Pesq Agropec Bras 34:1633–1643CrossRefGoogle Scholar
  2. Ardley JK, Parker MA, de Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ et al (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588PubMedCrossRefGoogle Scholar
  3. Balachandar D, Raja P, Kumar K, Sundaram SP (2007) Non-rhizobial nodulation in legumes. Biotechnol Mol Biol Rev 2:49–57Google Scholar
  4. Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77:549–579PubMedCrossRefGoogle Scholar
  5. Baldani JI, Caruso LV, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  6. Baldani JI, Azevedo MS, Reis VM, Teixeira KRS, Olivares FL, Goi SR, Baldani VLD et al (1999) Fixação biológica de nitrogênio em gramíneas: avanços e aplicações. In: Siqueira JO, Moreira FMS, Lopes AS, Guilherme LRG, Faquin V, Furtini Neto AE, Carvalho JG (eds) Inter-relação fertilidade, biologia do solo e nutrição de plantas. Universidade Federal de Lavras, Lavras, Sociedade Brasileira de Ciência do SoloGoogle Scholar
  7. Barcellos FG, Menna P, Batista JSB, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl Environ Microbiol 73:2635–2643PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bashan Y (1998) Azospirillum plant growth-promoting strains are nonpathogenic on tomato, pepper, cotton, and wheat. Can J Microbiol 44:168–174CrossRefGoogle Scholar
  9. Bashan Y, de -Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108:77–136CrossRefGoogle Scholar
  10. Batista JSS, Hungria M, Barcellos FG, Ferreira MC, Mendes IC (2007) Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a Cerrados soil. Microb Ecol 53:270–284PubMedCrossRefGoogle Scholar
  11. Bautista VV, Monsalud RG, Yokota A (2010) Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 60:627–632PubMedCrossRefGoogle Scholar
  12. Bergersen FJ (1982) Root nodules of legumes: structure and functions. Wiley, ChichesterGoogle Scholar
  13. Bontemps C, Elliott GN, Simon MF, dos Reis-Júnior FB, Gross E, Lawton RC, Neto NE et al (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52PubMedCrossRefGoogle Scholar
  14. Bournaud C, de Faria SM, Santos JMF, Tisseyre P, Silva M, Chaintreuil C, Gross E et al (2013) Burkholderia species are the most common and preferred nodulating symbiontes of the Pitadenia Group (Tribo Mimoseae). PLoS One 8:e63478PubMedPubMedCentralCrossRefGoogle Scholar
  15. Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Santos PE (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172PubMedCrossRefGoogle Scholar
  16. Cassán F, Perriga D, Sgroya V, Masciarellia O, Pennab C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.) Eur J Soil Biol 45:28–35CrossRefGoogle Scholar
  17. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397CrossRefGoogle Scholar
  18. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735PubMedCrossRefGoogle Scholar
  19. Chen WM, James EK, Coenye T, Chou JH, Barrios E, de Faria SM, Elliott GN et al (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851PubMedCrossRefGoogle Scholar
  20. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY et al (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059PubMedCrossRefGoogle Scholar
  21. Chibeba M, Guimarães MF, Brito RB, Nogueira MA, Araújo RS, Hungria M (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6:1641–1649CrossRefGoogle Scholar
  22. Coenye T, Vandamme P, Govan JR, LiPuma JJ (2001) Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436PubMedPubMedCentralCrossRefGoogle Scholar
  23. Costechareyre D, Rhouma A, Lavire C, Portier P, Chapulliot D, Bertolla F, Boubaker A et al (2010) Rapid and efficient identification of Agrobacterium species by recA allele analysis. Microb Ecol 60:862–872PubMedCrossRefGoogle Scholar
  24. Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr Cycl Agroecosyst 72:101–120CrossRefGoogle Scholar
  25. Dall’agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JRM, Andrade DS, Martínez-Romero E et al (2013) Rhizobium freirei, a symbiont of Phaseolus vulgaris very effective in fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173PubMedCrossRefGoogle Scholar
  26. Dall’Agnol RF, Ribeiro RA, Delamuta JR, Ormeño-Orrillo E, Rogel MA, Andrade DS, Martínez-Romero E et al (2014) Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64:3222–3229PubMedCrossRefGoogle Scholar
  27. Dall’agnol RF, Plotegher F, Souza RC, Mendes IC, Reis-Junior FB, Béna G, Moulin L et al (2016) Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian “Cerradão”. FEMS Microbiol Ecol. doi: 10.1093/femsec/fiw108 PubMedGoogle Scholar
  28. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS, Martínez-Romero E, Hungria M (2015) Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 65:4424–4433PubMedCrossRefGoogle Scholar
  29. Delamuta JR, Ribeiro RA, Araújo JLS, Rows LFM, Zilli JE, Parma MM, Melo IS, Hungria M et al (2016) Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001148 PubMedGoogle Scholar
  30. Denison RF (2000) Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am Nat 156:567–576CrossRefGoogle Scholar
  31. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nature Rev 2:621–631Google Scholar
  32. Dobrisa AP, Samadpour M (2016) Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.001065 Google Scholar
  33. Dong Z, Zelmer CD, Canny MJ, McCully ME, Luit B, Pan B, Faustino RS et al (2002) Evidence for protection of nitrogenase from O2 by colony structure in the aerobic diazotroph Gluconacetobacter diazotrophicus. Microbiology 148:2293–2298PubMedCrossRefGoogle Scholar
  34. Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Mol Plant-Microbe Interact 24:1289–1295PubMedCrossRefGoogle Scholar
  35. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98CrossRefGoogle Scholar
  36. Dwivedi SL, Sahrawat KL, Upadhyaya HD, Mengoni A, Galardini M, Bazzicalupo M, Biondi EG et al (2015) Advances in host plant and Rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. Adv Agron 129:1–116CrossRefGoogle Scholar
  37. Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron. doi: 10.1155/2014/208383 Google Scholar
  38. Florentino LA, Jaramillo PMD, Silva KB, Silva JS, Oliveira SM, Moreira FMS (2012) Physiological and symbiotic diversity of Cupriavidus necator strains isolated from nodules of Leguminosae species. Sci Agric 69:247–258CrossRefGoogle Scholar
  39. Flores-Félix JD, Carro L, Velásquez E, Valverde A, Cerda-Dastillo E, Garcia-Fraile P, Rivas R (2013) Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 63:821–826PubMedCrossRefGoogle Scholar
  40. Frank B. (1889) Über die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft, 7, 332–346Google Scholar
  41. Gaby JC, Buckley DH (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database. doi: 10.1093/database/bau001 PubMedPubMedCentralGoogle Scholar
  42. Garrity GM, Winters M, Searles DB (2001) Taxonomic outline of the procaryotic genera. Bergey's manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  43. Germano MG, Menna P, Mostasso FL, Hungria M (2006) RFLP analysis of the rRNA operon collection of bradyrhizobial strains from 33 legume species. Int J Syst Evol Microbiol 56:217–229PubMedCrossRefGoogle Scholar
  44. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739PubMedCrossRefGoogle Scholar
  45. Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI Publishers, WallingfordCrossRefGoogle Scholar
  46. Gomes DF, Ormeño-Orrillo E, Hungria M (2015) Biodiversity, symbiotic efficiency and genomics of Rhizobium tropici and related species. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, HobokenGoogle Scholar
  47. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview ofresearch and extension needs. Field Crop Res 65:93–106CrossRefGoogle Scholar
  48. Grange L, Hungria M, Graham PH, Martínez-Romero E (2007) New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus vulgaris) in Brazil. Soil Biol Biochem 39:867–876CrossRefGoogle Scholar
  49. Hartmann A, Fu H, Burris RH (1984) Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J Bacteriol 165:864–870CrossRefGoogle Scholar
  50. Helber JT, Johnson TR, Yarbrough LR, Hirschberg R (1988) Effect of nitrogenous compounds on nitrogenase gene expression in anaerobic cultures of Anabaena variabilis. J Bacteriol 170:558–563PubMedPubMedCentralCrossRefGoogle Scholar
  51. Helene LCF, Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Martínez-Romero E, Hungria M (2015) Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 65:4441–4448PubMedCrossRefGoogle Scholar
  52. Hungria M, Kaschuk G (2014) Regulation of N2 fixation and NO3 /NH4 + assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environ Exp Bot 98:32–39CrossRefGoogle Scholar
  53. Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, HobokenGoogle Scholar
  54. Hungria M, Vargas MAT (2000) Environmental factors impacting N2 fixation in legumes grown in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164CrossRefGoogle Scholar
  55. Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC et al (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and of N fertilizer to grain yield. Can J Plant Sci 86:927–939CrossRefGoogle Scholar
  56. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  57. Hungria M, Nogueira MA, Araújo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  58. Hungria M, Nogueira MA, Araújo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817CrossRefGoogle Scholar
  59. Hungria M, Nogueira MA, Araújo RS (2016) Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agric Ecosyst Environ 221:125–131CrossRefGoogle Scholar
  60. James EK (2010) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209CrossRefGoogle Scholar
  61. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Zhang XX, Wang ET et al (2015) Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 65:399–406PubMedCrossRefGoogle Scholar
  62. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nat Rev Microbiol 5:619–633PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139CrossRefGoogle Scholar
  64. Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B et al (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273PubMedCrossRefGoogle Scholar
  65. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A et al (2000) Complete genome structure of the nitrogen-fixing bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  66. Kaschuk G, Hungria M, Santos JCP, Berton-Junior JF (2006) Differences in common bean rhizobial populations associated with soil tillage management in southern Brazil. Soil Tillage Res 7:205–217CrossRefGoogle Scholar
  67. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244CrossRefGoogle Scholar
  68. Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW (2010a) Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biol 12:60–69PubMedCrossRefGoogle Scholar
  69. Kaschuk G, Leffelaar PA, Giller KE, Alberton O, Hungria M, Kuyper TW (2010b) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–127CrossRefGoogle Scholar
  70. Kaschuk G, Yin X, Hungria M, Leffelaar PA, Giller KE, Kuyper TW (2012) Photosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strains. Environ Exp Bot 76:1–6CrossRefGoogle Scholar
  71. Kaschuk G, Nogueira MA, de Luca MJ, Hungria M (2016) Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crop Res 195:21–27CrossRefGoogle Scholar
  72. Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszyński A, Carlson RW et al (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312PubMedCrossRefGoogle Scholar
  73. Keyser HH, Bohlool BB, Hu TS, Weber DF (1982) Fast-growing rhizobia isolated from root nodules of soybeans. Science 215:1631–1632PubMedCrossRefGoogle Scholar
  74. Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc R Soc Lond 274:3119–3126CrossRefGoogle Scholar
  75. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572PubMedPubMedCentralCrossRefGoogle Scholar
  76. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K et al (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290PubMedCrossRefGoogle Scholar
  77. Lang E, Schumann P, Adler S, Spröer C, Sahin N (2013) Azorhizobium oxalatiphilum sp. nov., and emended description of the genus Azorhizobium. Int J Syst Evol Microbiol 63:1505–1511PubMedCrossRefGoogle Scholar
  78. Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17PubMedCrossRefGoogle Scholar
  79. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413PubMedCrossRefGoogle Scholar
  80. Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA et al (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–726PubMedCrossRefGoogle Scholar
  81. Magurran AE (2004) Measuring biological diversity. Blackwell Science, OxfordGoogle Scholar
  82. Mantelin S, Saux MF, Zakhia F, Béna G, Bonneau S, Jeder H, de Lajudie P, Cleyet-Marel JC (2006) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56:827–839PubMedCrossRefGoogle Scholar
  83. Marchal K, Vanderleyden J (2000) The “oxygen paradox” of dinitrogen-fixing bacteria. Biol Fertil Soils 30:363–373CrossRefGoogle Scholar
  84. Marchetti M, Catrice O, Batut J, Masson-Boivin C (2011) Cupriavidus taiwanensis bacteroids in Mimosa pudica indeterminate nodules are not terminally differentiated. Appl Environ Microbiol 77:2161–2164PubMedPubMedCentralCrossRefGoogle Scholar
  85. Marks BB, Megías M, Ollero FX, Nogueira MA, Araújo RS, Hungria M (2015) Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express 5:71PubMedPubMedCentralCrossRefGoogle Scholar
  86. Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332PubMedCrossRefGoogle Scholar
  87. Menna P, Pereira AA, Bangel EV, Hungria M (2009) Rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis 48:120–130CrossRefGoogle Scholar
  88. Mirza BS, Potisap C, Nüsslein K, Bohannan BJM, Rodrigues JLM (2014) Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest. Appl Environ Microbiol 80:281–288PubMedPubMedCentralCrossRefGoogle Scholar
  89. Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ et al (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196CrossRefGoogle Scholar
  90. Moreira FMS, Silva MF, Faria SM (1992) Ocorrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570CrossRefGoogle Scholar
  91. Moreira FMS, Cruz L, Faria SM, Marsh T, Martínez-Romero E, Pedrosa FO, Pitard RM et al (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers Syst Appl Microbiol 29:197–206CrossRefGoogle Scholar
  92. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L et al (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215PubMedCrossRefGoogle Scholar
  93. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90PubMedCrossRefGoogle Scholar
  94. Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiumi T, Nuntagij A et al (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27PubMedCrossRefGoogle Scholar
  95. Oelze J (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported byexperimental evidence? FEMS Microbiol Rev 24:321–333PubMedCrossRefGoogle Scholar
  96. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  97. Ormeño-Orrillo E, Hungria M, Martínez-Romero E (2013) Dinitrogen-fixing prokaryotes. In: Rosemberg E, de Long EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes – prokaryotic physiology and biochemistry. Springer, Berlin HeidelbergGoogle Scholar
  98. Parker MA (2002) Bradyrhizobia from wild Phaseolus, Desmodium and Macroptilium species in northern Mexico. Appl Environ Microbiol 68:2044–2048PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249:967–979PubMedCrossRefGoogle Scholar
  100. Pereg L, de- Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414CrossRefGoogle Scholar
  101. Peres JRR, Vargas MAT, Suhet AR (1984) Variabilidade na eficiência em fixar nitrogênio entre isolados de uma mesma estirpe de Rhizobium japonicum. Rev Bras Ciênc Solo 8:193–196Google Scholar
  102. Peres AR, Rodrigues RAF, Arf O, Portugal JR, Corsini DCDC (2016) Co-inoculation of Rhizobium tropici and Azospirillum brasilense in common beans grown under two irrigation depths. Rev Ceres 63:198–207CrossRefGoogle Scholar
  103. Perrineau MM, Le Roux C, Galiana A, Faye A, Duponnois R, Goh D, Prin Y et al (2014) Differing courses of genetic evolution of Bradyrhizobium inoculants as revealed by long-term molecular tracing in Acacia mangium plantations. Appl Environ Microbiol 80:5709–5716PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 NGR234and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant-Microbe Interact 12:293–318PubMedCrossRefGoogle Scholar
  105. Pulver EL, Kueneman EA, Ranga-Rao V (1985) Identification of promiscuous nodulating soybean efficient in N2 fixation. Crop Sci 25:660–663CrossRefGoogle Scholar
  106. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM, Xavier GR, Rumjanek NG et al (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 64:725–730PubMedCrossRefGoogle Scholar
  107. Reis VM, Paula MA, Döbereiner J (1999) Ocorrência de micorrizas arbusculares e da diazotrófica Acetobacter diazotrophicus em cana-de-açúcar. Pesq Agrop Brasileira 34:1933–1941CrossRefGoogle Scholar
  108. Reis VM, Estrada-de-los-Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P et al (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162PubMedCrossRefGoogle Scholar
  109. dos Reis-Junior FB, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro MF et al (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946CrossRefGoogle Scholar
  110. Ribeiro RA, Barcellos FG, Thompson FL, Hungria M (2009) Multilocus sequence analysis of Brazilian Rhizobium strains microsymbionts of common beans (Phaseolus vulgaris) reveals unexpected taxonomic diversity. Res Microbiol 160:297–306PubMedCrossRefGoogle Scholar
  111. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL et al (2012) Reclassification of Rhizobium tropici type a strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1180–1185CrossRefGoogle Scholar
  112. Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF et al (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68:5217–5222PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E et al (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53PubMedCrossRefGoogle Scholar
  114. Rodrigues EPLS, Oliveira ALM, Baldani VLD, Teixeira KRT, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.) Plant Soil 302:249–261CrossRefGoogle Scholar
  115. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  116. Ruiz-Sainz JE, Chandler MR, Jimenez-Diaz R, Beringer JE (1984) Transfer of a host range plasmid from R. leguminosarum to fast growing bacteria that nodulates soybeans. J Appl Bacteriol 57:309–315CrossRefGoogle Scholar
  117. Sánchez M, Ramírez-Bahena MH, Peix A, Lorite MJ, Sanjuán J, Velázquez E, Monza J (2014) Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int J Syst Evol Microbiol 64:781–786PubMedPubMedCentralCrossRefGoogle Scholar
  118. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429PubMedPubMedCentralCrossRefGoogle Scholar
  120. Silva K, Nóbrega RSA, Lima AS, Barberi A, Moreira FMS (2011) Density and diversity of diazotrophic bacteria isolated from Amazonian soils using N-free semi-solid media. Sci Agric 68:518–525CrossRefGoogle Scholar
  121. Silva FV, Meyer SE, Simões-Araújo JL, Barbé TC, Xavier GR, O'Hara G, Ardley JK et al (2014) Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils. Int J Syst Evol Microbiol 64:2358–2363PubMedCrossRefGoogle Scholar
  122. Souza RC, Mendes IC, Reis-Junior FB, Carvalho FM, Nogueira MA, Vasconcelos ATR, Vicente VA et al (2016) Shifts in taxonomic and functional microbial diversity with agriculture: how fragile is the Brazilian Cerrado? BMC Microbiol 16:42–57PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sprent JI (2009) Legume nodulation. A global perspective. Wiley-Blackwell, New DelhiCrossRefGoogle Scholar
  124. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden X, Nesme MCJ et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedGoogle Scholar
  125. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y et al (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedPubMedCentralCrossRefGoogle Scholar
  127. Thiel T, Pratte B (2001) Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 183:280–286PubMedPubMedCentralCrossRefGoogle Scholar
  128. Torres AR, Kaschuk G, Saridakis GP, Hungria M (2012) Genetic variability in Bradyrhizobium japonicum strains nodulating soybean [Glycine max (L.) Merrill]. World J Microbiol Biotechnol 28:1831–1835PubMedCrossRefGoogle Scholar
  129. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF et al (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327PubMedPubMedCentralCrossRefGoogle Scholar
  130. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438PubMedPubMedCentralGoogle Scholar
  131. Velázquez E, Palomo JL, Rivas R, Guerra H, Peix A, Trujillo ME (2010) Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Syst Appl Microbiol 33:247–251PubMedCrossRefGoogle Scholar
  132. Villegas-Espinoza JA, Rueda-Puente EO, Murillo-Amador B, Puente ME, Grimaldo-Juárez O, Avilés-Marín SM, Medina JFP (2010) Effecto de la inoculación de Azospirillum halopraeferens y Bacillus amyloliquefaciens em la germinación de Prosopis chilensis. Trop Subtrop Agroecosyst 12:19–32Google Scholar
  133. Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. IBP Handbook No. 15 International Biology Program, LondonGoogle Scholar
  134. Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182PubMedGoogle Scholar
  135. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedPubMedCentralCrossRefGoogle Scholar
  136. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  137. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  138. Young JM (2010) Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the Judicial Commission? Int J Syst Evol Microbiol 60:1711–1713PubMedCrossRefGoogle Scholar
  139. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103PubMedCrossRefGoogle Scholar
  140. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554PubMedCrossRefGoogle Scholar
  141. Zilli JE, Valisheski RR, Freire-Filho FR, Neves MCP, Rumjanek NG (2004) Assessment of cowpea Rhizobium diversity in Cerrado areas of Northeastern Brazil. Braz J Microbiol 35:281–287CrossRefGoogle Scholar
  142. Zurdo-Pinñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A et al (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Solos e Engenharia Agrícola-UFPRCuritibaBrazil
  2. 2.Embrapa SojaLondrinaBrazil

Personalised recommendations