Skip to main content

Importance of Mycorrhizae in Tropical Soils

  • Chapter
  • First Online:
Diversity and Benefits of Microorganisms from the Tropics

Abstract

Mycorrhizae have evolved together with vascular plants, and they are widespread in all terrestrial ecosystems. In the tropics, the arbuscular mycorrhizae play the most important functions in both natural and agricultural ecosystems when compared with the other types of mycorrhizae. Their main role is to increase plant nutrition, notably P, but there are also several other direct and indirect benefits to the host plants and the environment. In natural environments, these symbionts are involved in the structuration of plant communities along the succession. In agroecosystems, they also play important roles in plant nutrition, alleviation of biotic and abiotic stresses, sequestration of C, and several other direct and indirect benefits. Despite their effects, the importance of mycorrhizae in the production systems has been neglected relative to their huge biotechnological potential. We highlight the role of arbuscular mycorrhizae in the tropical environment and their potential as a biotechnological tool to increase the sustainability of agricultural systems. Besides the universal arbuscular mycorrhizae, ectomycorrhizae are also included in this chapter given their importance for temperate tree species grown in the tropics, and orchidoid mycorrhizae, which are important because of the great biodiversity of these plants in tropical environments, many of which are endangered of extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (1992) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for mycorrhizal research. Academic Press, San Diego

    Google Scholar 

  • Aidar MPM, Carrenho R, Joly CA (2004) Aspects of arbuscular mycorrhizal fungi in an Atlantic Forest chronosequence. Biota Neotrop 4:1–15

    Article  Google Scholar 

  • Ames RN, Mihara KL, Bayne HG (1989) Chitin-decomposing Actinomycetes associated with a vesicular arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111:67–71

    Article  Google Scholar 

  • Andersen TF, Rasmussen HN (1996) The mycorrhizal species of Rhizoctonia. In: Sneh B, Jabajihare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology, and disease control. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Andrade PAM (2013) A composição da comunidade bacteriana do solo como fator determinante na micorrização de cana-de-açúcar por Glomus clarum. Dissertation, University of São Paulo

    Google Scholar 

  • Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agric 71:528–539

    Article  Google Scholar 

  • Antunes V, Cardoso EJBN (1991) Growth and nutrient status of citrus plants as influenced by mycorrhiza and phosphorus application. Plant Soil 131:11–19

    Article  CAS  Google Scholar 

  • Barea JM, Ferrol N, Azcón-Aguilar C, Azcón R (2008) The ecophysiology of plant-phosphorus interactions. Mycorrhizal symbioses. Plant Ecophysiol 7:143–163

    Article  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) Candidatus Glomeribacter gigasporarum, gen. Nov., spec. Nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J System Evolut Microb 53:121–124

    Article  CAS  Google Scholar 

  • Bini D (2013) Atributos microbianos e químicos do solo e da serapilheira em plantios puros e mistos de Eucalyptus grandis e Acacia mangium. Thesis, University of São Paulo

    Google Scholar 

  • Bonfim JA, Vasconcellos RLF, Gumiere T, Mescolotti DLC, Oehl F, Cardoso EJBN (2016) Diversity of arbuscular mycorrhizal fungi in a Brazilian Atlantic Forest toposequence. Microb Ecol 71:164–177

    Article  PubMed  Google Scholar 

  • Bononi VLR, Trufem SFB (1983) Endomicorrizas vesículo-arbusculares do cerrado da Reserva Biológica de Mogi-Guaçu, SP, Brasil. Rickia 10:55–84

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Buol SW (2009) Soils and agriculture in central-west and north Brazil. Sci Agric 66:697–707

    Article  Google Scholar 

  • Cardoso EJBN (1985) Efeito de micorriza vesículo-arbuscular e fosfato de rocha na simbiose soja-Rhizobium. Rev Bras Ci Solo 9:125–130

    Google Scholar 

  • Cardoso EJBN (1996) Interaction of mycorrhiza, phosphate and manganese in soybean. In: European Symposium on Mycorrhizas, 4. Granada. p. 304–306

    Google Scholar 

  • Cardoso EJBN, Nogueira MA, Ferraz SMG (2007) Biological N2 fixation and mineral N in common bean–maize intercropping or sole cropping in southeastern Brazil. Exp Agric 43:319–330

    Article  CAS  Google Scholar 

  • de Miranda JCC (2008) Cerrado: Micorriza arbuscular, ocorrência e manejo. EMBRAPA Cerrados, Planaltina

    Google Scholar 

  • De Souza FA, Declerck S, Smit E, Kowalschuk GA (2005) Morphological, ontogenetic and molecular characterization of Scutellospora reticulata (Glomeromycota). Mycol Res 109:697–706

    Article  PubMed  Google Scholar 

  • Desiró A, Salvioli A, Ngonkeu EL, Mondo SJ, Epis S, Faccio A, Kaech A, Pawlowska TE, Bonfante P (2014) Detection of novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME J 8:257–270

    Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir–Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann Sci For 48:239–251

    Article  Google Scholar 

  • Fontes PF, Alleoni LRF (2006) Electrochemical attributes and availability of nutrients, toxic elements, and heavy metals in tropical soils. Sci Agric 63:589–608

    Article  CAS  Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375

    Article  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis (Tansley review, 76). New Phytol 128:197–210

    Article  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. doi:10.1111/nph.12146

    Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Kasuya MCM, Linhares DO, Meira RM, Pereira OL, Costa MD, Pereira MC (2006) Morphological characterization of Epidendrum secundum and Zygopetalum mackaii mycorrhizae, native orchids from Brazil. In: International Conference on Mycorrhizae, 5. Granada

    Google Scholar 

  • Kleinschmidt GD, Gerdemann JW (1972) Stunting of citrus seedlings in fumigated nursery soil related to the absence of endomycorrhizae. Phytopathology 62:1447–1453

    Article  Google Scholar 

  • Lambais MR, Mehdy MC (1995) Differential expression of defense-related genes in arbuscular mycorrhiza. Can J Bot 75:533–340

    Article  Google Scholar 

  • Lambais MR, Ramos AC (2010) Biochemical signals and their transduction in arbuscular mycorrhizas. In: Siqueira JO et al (eds) Mycorrhizas: 30 years of science in Brazil. UFLA, Lavras

    Google Scholar 

  • Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Maia LC, Yano-Mello AM, Goto BT (2006) Filo Glomeromycota. In: Gusmão LFP, Maia LC (eds) Diversidade e caracterização dos fungos do semi-árido Brasileiro. Associação Plantas do Nordeste, Recife

    Google Scholar 

  • Melloni R, Cardoso EJBN (1999) Quantificação de micélio extrarradicular de fungos micorrízicos arbusculares em plantas cítricas. II. Comparação entre diferentes espécies cítricas e endófitos. Rev Bras Ci Solo 23:59–67

    Article  Google Scholar 

  • Mendes Filho PF (2004) Potencial de reabilitação do solo de uma área degradada, através da revegetação e do manejo microbiano. Thesis, University of São Paulo

    Google Scholar 

  • Mendes Filho PF, Vasconcellos RLF, Paula AM, Cardoso EJBN (2010) Evaluating the potential of forest species under “microbial management” for the restoration of degraded mining areas. Water Air Soil Pollut 208:79–89

    Article  CAS  Google Scholar 

  • Moreira M, Baretta D, Tsai SM, Gomes-da-Costa SM, Cardoso EJBN (2007) Biodiversity and distribution of arbuscular mycorrhizal fungi in Araucaria angustifolia forest. Sci Agric 64:393–399

    Article  Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195

    Article  Google Scholar 

  • Mosse B (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171:974

    Article  CAS  PubMed  Google Scholar 

  • Mosse B (1957) Growth and composition of mycorrhizal and non-mycorrhizal apples. Nature 179:922–924

    Article  CAS  Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    Article  CAS  PubMed  Google Scholar 

  • Munyanziz E, Kehri HK, Bagyaraj DJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of mycorrhiza in crops and trees. Appl Soil Ecol 6:77–85

    Article  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2003) Mycorrhizal effectiveness and manganese toxicity in soybean as affected by soil type and endophyte. Sci Agric 60:329–335

    Article  CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal rangpur lime seedlings under different levels of phosphorus. Pesq Agrop Brasileira 41:93–99

    Article  Google Scholar 

  • Nogueira MA, Cardoso EJBN, Hampp R (2002) Manganese toxicity and callose deposition in leaves are attenuated by mycorrhizal soybean. Plant Soil 246:1–10

    Article  CAS  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Pasqualini D, Uhlmann A, Stürmer SL (2007) Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration of woody plants species from the Atlantic rain forest in South Brazil. For Ecol Manag 245:148–155

    Article  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply: analysis of carbon costs. Plant Physiol 101:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira APA (2015) Influência da profundidade do solo e do manejo de Eucalyptus grandis e Acacia mangium na estrutura das comunidades microbianas do solo. Dissertation, University of São Paulo

    Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC, Araújo OF (2005) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65

    Article  CAS  Google Scholar 

  • Powers JS, Treseder KK, Lerdau MT (2005) Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distance. New Phytol 165:913–921

    Article  CAS  PubMed  Google Scholar 

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiol 51:123–130

    Article  CAS  Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008) A proton (H+) flux signature of the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse RA (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Prog 6:35–44

    Article  Google Scholar 

  • Robinson D, Fitter A (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13

    Article  CAS  Google Scholar 

  • Schüssler A, Wolf E (2005) Geosiphon pyriformis – a glomeromycotan soil fungus forming endosymbiosis with cyanobacteria. In: Declerck S, Strullu D-G, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schüssler A, Schwarzott D, Walker CA (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sena JOA, Labate CA, Cardoso EJBN (2004) Physiological characterization of growth depression in arbuscular-mycorrhizal citrus seedlings under high P levels. Rev Bras Ci Solo 28:827–832

    Article  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical Agrosystems. Technical Cooperation Federal Republic of Germany, Eschborn

    Google Scholar 

  • Sieverding E, Oehl F (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual 80:61–81

    Google Scholar 

  • Silveira APD, Cardoso EJBN (2004) Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants. Sci Agric 61:203–209

    Article  Google Scholar 

  • Silveira APD, Silva LR, Azevedo IC, Oliveira E, Meletti LMM (2003) Desempenho de fungos micorrízicos arbusculares na produção de mudas de maracujazeiro-amarelo, em diferentes substratos. Bragantia 62:89–99

    Article  Google Scholar 

  • Siqueira JO, Carneiro MAC, Curi N, Rosado SCS, Davide AC (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in southeastern Brazil. For Ecol Manag 107:241–252

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, Cambridge

    Google Scholar 

  • Stürmer SL, Morton JB (1999) Taxonomic reinterpretation of morphological characters in Acaulosporaceae based on developmental patters. Mycologia 91:849–857

    Article  Google Scholar 

  • Stürmer SL, Siqueira JO (2006) Diversity of arbuscular mycorrhizal fungi in Brazilian ecosystems. In: Moreira FMS et al (eds) Soil biodiversity in Amazonian and other Brazilian ecosystems. CAB Publishers, Wallingford

    Google Scholar 

  • Timonen S, Marschner P (2006) Mycorrhizosphere concept. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, New York

    Google Scholar 

  • Timonen S, Jorgenson KS, Haahtela K, Sen R (1998) Bacterial community of scots pine-Suillus bovinus and -Paxillus involutus mycorrhizospheres in dry pine forest soil and nursery peat. Can J Microbiol 44:499–513

    Article  CAS  Google Scholar 

  • Trufem SFB, Otomo HS, Malatinszky SMM (1989) Fungos micorrízicos vesículo-arbusculares em rizosferas de plantas em dunas do Parque Estadual da Ilha do Cardoso, São Paulo, Brasil. 1. Taxonomia. Acta Bot Bras 3:141–152

    Article  Google Scholar 

  • Valadares RBS, Otero JT, Pereira MC, Cardoso EJBN (2015) The epiphytic orchids Ionopsis utricularioides and Psygmorchis pusilla associate with different Ceratobasidium lineages at Valle del Cauca, Colombia. Acta Bot Bras 29:40–44

    Article  Google Scholar 

  • Vandresen J, Nishidate FR, Torezan JMD, Zangaro W (2007) Inoculação de fungos micorrízicos arbusculares e adubação na formação e pós-transplante de mudas de cinco espécies arbóreas nativas do sul do Brasil. Acta Bot Bras 21:753–765

    Article  Google Scholar 

  • Vasconcellos RLF, Bonfim JA, Baretta D, Cardoso EJBN (2013) Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlantic Forest in Brazil. Land Degrad Dev 27:325–334

    Article  Google Scholar 

  • Walker C, Sanders FE (1986) Taxonomic concept in the Endogonaceae. III. The separation of Scutellospora gen nov from Gigaspora Gerd & Trappe. Mycotaxon 27:169–182

    Google Scholar 

  • Walker C, Vestberg M, Schüssler A (2007) Nomeclatural classification in Glomeromycota. Mycol Res 111:253–255

    Article  Google Scholar 

  • Yano-Mello AM, Trufem SFB, Maia LC (2003) Arbuscular mycorrhizal fungi and surrounded areas at the São Francisco Submedium Valley, Brazil. Hoehnea 30:79–87

    Google Scholar 

  • Zandavalli RB, Stürmer SL, Dillenburg LR (2008) Species richness of arbuscular mycorrhizal fungi in forest with Araucaria in Southern Brazil. Hoehnea 35:63–68

    Article  Google Scholar 

  • Zangaro W, Bononi VLR, Trufen SB (2000) Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. J Trop Ecol 16:603–622

    Article  Google Scholar 

  • Zangaro W, Nishidate FR, Domingos JCB, Nakano M (2003) Mycorrhizal response and successional status in 80 woody species from South Brazil. J Trop Ecol 16:605–622

    Google Scholar 

  • Zangaro W, Nishidate FR, Camargo FRS, Romagnoli GG, Vandresen J (2005) Relationships among arbuscular mycorrhizas, root morphology and seedling growth of tropical native woody species in southern Brazil. J Trop Ecol 21:529–540

    Article  Google Scholar 

  • Zangaro W, Nishidate FR, Vandresen J, Andrade G, Nogueira MA (2007) Root mycorrhizal colonization and plant responsiveness are related to root plasticity, soil fertility and successional status of native woody species in southern Brazil. J Trop Ecol 23:53–62

    Article  Google Scholar 

  • Zangaro W, Ansanelo AP, Lescano LEAM, Alves RA, Rondina ABL, Nogueira MA (2012) Infection intensity, spore density and inoculum potential of arbuscular mycorrhizal fungi decrease during secondary succession in tropical Brazilian ecosystems. J Trop Ecol 28:453–462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke J. B. N. Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cardoso, E.J.B.N., Nogueira, M.A., Zangaro, W. (2017). Importance of Mycorrhizae in Tropical Soils. In: de Azevedo, J., Quecine, M. (eds) Diversity and Benefits of Microorganisms from the Tropics . Springer, Cham. https://doi.org/10.1007/978-3-319-55804-2_11

Download citation

Publish with us

Policies and ethics