Analysis of Climate Dynamics Across a European Transect Using a Multifractal Method

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Climate dynamics were assessed using multifractal detrended fluctuation analysis (MF-DFA) for sites in Finland, Germany and Spain across a latitudinal transect. Meteorological time series were divided into the two subsets (1980–2001 and 2002–2010) and respective spectra of these subsets were compared to check whether changes in climate dynamics can be observed using MF-DFA. Additionally, corresponding shuffled and surrogate time series were investigated to evaluate the type of multifractality. All time series indicated underlying multifractal structures with considerable differences in dynamics and development between the studied locations. The source of multifractality of precipitation time series was two-fold, coming from the width of the probability function to a greater extent than for other time series. The multifractality of other analyzed meteorological series was mainly due to long-range correlations for small and large fluctuations. These results may be especially valuable for assessing the change of climate dynamics, as we found that larger changes in asymmetry and width parameters of multifractal spectra for divided datasets were observed for precipitation than for other time series. This suggests that precipitation is the most vulnerable meteorological quantity to change of climate dynamics.


Climate Multifractal detrended fluctuation analysis Time series Meteorological quantities European transect 



This paper has been partly financed from the funds of the Polish National Centre for Research and Development in frame of the projects: LCAgri, contract number: BIOSTRATEG1/271322/3/NCBR/2015 and GyroScan, contract number: BIOSTRATEG2/298782/11/NCBR/2016. We acknowledge Finnish Meteorological Institute (FMI) for delivering us data for Jokioinen site [37]. HH was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), (2851ERA01J).


  1. 1.
    Balling, R.C., Vose, R.S., Weber, G.R.: Analysis of long-term European temperature records: 1751–1995. Clim. Res. 10, 193–200 (1998)CrossRefGoogle Scholar
  2. 2.
    Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A 316(1–4), 87–114 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D 31, 277–283 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kalauzi, A., Spasić, S., Ćulić, M., Grbić, G., Martać, Lj: Consecutive differences as a method of signal fractal analysis. Fractals 13(4), 283–292 (2005)CrossRefGoogle Scholar
  5. 5.
    Schertzer, D., Lovejoy, S.: Multifractal simulation and analysis of clouds by multiplicative process. Atmos. Res. 21, 337–361 (1988)CrossRefGoogle Scholar
  6. 6.
    Kavasseri, R.G., Nagarajan, R.: A multifractal description of wind speed records. Chaos Solitons Fractals 24, 165–173 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Feng, T., Fu, Z., Deng, X., Mao, J.: A brief description to different multi-fractal behaviors of daily wind speed records over China. Phys. Lett. A 45, 4134–4141 (2009)CrossRefGoogle Scholar
  8. 8.
    Koscielny-Bunde, E., Roman, H.E., Bunde, A., Havlin, S., Schellnhuber, H.J.: Long-range power-law correlations in local daily temperature fluctuations. Philos. Mag. B 77(5), 1331–1340 (1998)CrossRefGoogle Scholar
  9. 9.
    Király, A., Jánosi, I.M.: Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia. Meteorol. Atmos. Phys. 88, 119–128 (2005)CrossRefGoogle Scholar
  10. 10.
    Bartos, I., Jánosi, I.M.: Nonlinear correlations of daily temperature records over land. Nonlinear Process. Geophys. 13, 571–576 (2006)CrossRefGoogle Scholar
  11. 11.
    Lin, G., Fu, Z.: A universal model to characterize different multi-fractal behaviors of daily temperature records over China. Phys. A 387, 573–579 (2008)CrossRefGoogle Scholar
  12. 12.
    Yuan, N., Fu, Z., Mao, J.: Different multifractal behaviors of diurnal temperature range over the north and the south of China. Theor. Appl. Climatol. 112, 673–682 (2013)CrossRefGoogle Scholar
  13. 13.
    Fraedrich, K., Blender, R.: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett. 90, 108501 (2003)CrossRefGoogle Scholar
  14. 14.
    Jiang, L., Zhao, J., Li, N., Li, F., Guo, Z.: Different multifractal scaling of the 0 cm average ground surface temperature of four representative weather stations over China. Adv. Meteorol. 2013, Article ID 341934 (2013)Google Scholar
  15. 15.
    Deidda, R.: Rainfall downscaling in a space-time multifractal framework. Water Resour. Res. 36, 1779–1794 (2000)CrossRefGoogle Scholar
  16. 16.
    García-Marín, A.P., Jiménez-Hornero, F.J., Ayuso, J.L.: Applying multifractality and the self-organised criticality theory to describe the temporal rainfall regimes in Andalusia (southern Spain). Hydrol. Process. 22, 295–308 (2008)CrossRefGoogle Scholar
  17. 17.
    De Lima, M.I.P., de Lima, J.L.M.P.: Investigating the multifractality of point precipitation in the Madeira archipelago. Nonlinear Process. Geophys. 16, 299–311 (2009)CrossRefGoogle Scholar
  18. 18.
    Gemmer, M., Fischer, T., Su, B., Liu, L.L.: Trends of precipitation extremes in the Zhujiang River Basin. South China J. Clim. 24, 750–761 (2011)Google Scholar
  19. 19.
    Lovejoy, S., Pinel, J., Schertzer, D.: The global space—time cascade structure of precipitation: satellites, gridded gauges and reanalyses. Adv. Water Resour. 45, 37–50 (2012)CrossRefGoogle Scholar
  20. 20.
    Jimenez-Hornero, F.J., Jimenez-Hornero, J.E., de Rave, E.G., Pavon-Dominguez, P.: Exploring the relationship between nitrogen dioxide and ground-level ozone by applying the joint multifractal analysis. Environ. Monit. Assess. 167, 675–684 (2010)CrossRefGoogle Scholar
  21. 21.
    Murcio, R., Masucci, A.P., Arcaute, E., Batty, M.: Multifractal to monofractal evolution of the London street network. Phys. Rev. E 92, 062130 (2015)CrossRefGoogle Scholar
  22. 22.
    Yu, Z.-G., Leung, Y., Chen, Y.D., Zhang, Q., Anh, V., Zhou, Y.: Multifractal analyses of daily rainfall time series in Pearl River basin of China. Phys. A 405, 193–202 (2014)CrossRefGoogle Scholar
  23. 23.
    Valencia, J.L., Requejo, A.S., Gasco, J.M., Tarquis, A.M.: A universal multifractal description applied to precipitation patterns of the Ebro River Basin. Spain. Clim. Res. 44, 17–25 (2010)CrossRefGoogle Scholar
  24. 24.
    Veneziano, D., Langousis, A., Furcolo, P.: Multifractality and rainfall extremes: a review. Water Resour. Res.42, W06D15 (2006)Google Scholar
  25. 25.
    Venugopal, V., Roux, S.G., Foufoula-Georgiou, E., Arneodo, A.: Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour. Res. 42, W06D14 (2006)Google Scholar
  26. 26.
    Yonghe, L., Kexin, Z., Wanchang, Z., Yuehong, S., Hongqin, P., Jinming, F.: Multifractal analysis of 1 min summer rainfall time series from a monsoonal watershed in eastern China. Theor. Appl. Climatol. 111, 37–50 (2013)CrossRefGoogle Scholar
  27. 27.
    Rodríguez, R., Casas, M.C., Redaño, A.: Multifractal analysis of the rainfall time distribution on the metropolitan area of Barcelona (Spain). Meteorol. Atmos. Phys. 121, 181–187 (2013)CrossRefGoogle Scholar
  28. 28.
    Huntingford, C., Jones, P.D., Livinia, V.N., Lenton, T.M., Cox, P.M.: No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013)CrossRefGoogle Scholar
  29. 29.
    Swanson, K.L., Tsonis, A.A.: Has the climate recently shifted? Geophys. Res. Lett. 36, L06711 (2009)CrossRefGoogle Scholar
  30. 30.
    Dee, D., Uppala, S., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)CrossRefGoogle Scholar
  31. 31.
    Telesca, L., Lovallo, M.: Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher-Shannon information plane. J. Stat. Mech., P07001 (2011)Google Scholar
  32. 32.
    Theiler, J., Galdrikian, B., Longtin, A., Eubank, S., Farmer, D.J.: Using surrogate data to detect nonlinearity in time series. In: Nonlinear Modeling and Forecasting, pp. 163–188. Addison-Wesley (1992)Google Scholar
  33. 33.
    Min, L., Shuang-Xi, Y., Gang, Z., Gang, W.: Multifractal detrended fluctuation analysis of interevent time series in a modified OFC model. Commun. Theor. Phys. 59, 1–6 (2013)CrossRefzbMATHGoogle Scholar
  34. 34.
    Mali, P.: Multifractal characterization of global temperature anomalies. Theor. Appl. Climatol. 121(3), 641–648 (2014)Google Scholar
  35. 35.
    Kantelhardt, J.W., Koscielny-Bunde, E., Rybski, D., Braun, P., Bunde, A., Havlin, S.: Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res. 111, D01106 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    Baranowski, P., Krzyszczak, J., Slawinski, C., Hoffmann, H., Kozyra, J., Nierobca, A., Siwek, K., Gluza, A.: Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res. 65, 39–52 (2015)CrossRefGoogle Scholar
  37. 37.
    Venäläinen, A., Tuomenvirta, H., Pirinen, P., Drebs, A.: A basic finnish climate data set 1961–2000—description and illustration. Finnish Meteorological Institute Reports, vol. 5. Finnish Meteorological Institute, Helsinki, Finland (2005)Google Scholar
  38. 38.
    Krzyszczak, J., Baranowski, P., Zubik, M., Hoffmann, H.: Temporal scale influence on multifractal properties of agro-meteorological time series. Agric. For. Meteorol. 239, 223–235 (2017)Google Scholar
  39. 39.
    Hoffmann, H., Baranowski, P., Krzyszczak, J., Zubik, M., Sławiński, C., Gaiser, T., Ewert, F.: Temporal properties of spatially aggregated meteorological time series. Agric. For. Meteorol. 234–235, 247–257 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Agrophysics, Polish Academy of SciencesLublinPoland
  2. 2.Institute of Crop Science and Resource Conservation (INRES)BonnGermany

Personalised recommendations