Skip to main content

Time-Frequency Representations as Phase Space Reconstruction in Symbolic Recurrence Structure Analysis

  • Conference paper
  • First Online:

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Recurrence structures in univariate time series are challenging to detect. We propose a combination of symbolic and recurrence analysis in order to identify recurrence domains in the signal. This method allows to obtain a symbolic representation of the data. Recurrence analysis produces valid results for multidimensional data, however, in the case of univariate time series one should perform phase space reconstruction first. In this chapter, we propose a new method of phase space reconstruction based on the signal’s time-frequency representation and compare it to the delay embedding method. We argue that the proposed method outperforms the delay embedding reconstruction in the case of oscillatory signals. We also propose to use recurrence complexity as a quantitative feature of a signal. We evaluate our method on synthetic data and show its application to experimental EEG signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Addison, P.S.: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. Institute of Physics Publishing, Bristol, UK, Philadelphia (2002)

    Google Scholar 

  2. Allefeld, C., Atmanspacher, H., Wackermann, J.: Mental states as macrostates emerging from EEG dynamics. Chaos 19, 015102 (2009)

    Article  MathSciNet  Google Scholar 

  3. beim Graben, P., Hutt, A.: Detecting recurrence domains of dynamical systems by symbolic dynamics. Phys. Rev. Lett. 110(15), 154101 (2013)

    Google Scholar 

  4. beim Graben, P., Hutt, A.: Detecting event-related recurrences by symbolic analysis: applications to human language processing. Philos. Trans. A Math. Phys. Eng. Sci. 373(2034) (2015)

    Google Scholar 

  5. beim Graben, P., Sellers, K.K., Fröhlich, F., Hutt, A.: Optimal estimation of recurrence structures from time series. EPL 114(3), 38003 (2016)

    Google Scholar 

  6. Donner, R., Hinrichs, U., Scholz-Reiter, B.: Symbolic recurrence plots: A new quantitative framework for performance analysis of manufacturing networks. Eur. Phys. J. Spec. Top. 164(1), 85–104 (2008)

    Article  Google Scholar 

  7. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence Plots of Dynamical Systems. Europhys. Lett. EPL 4(9), 973–977 (1987)

    Article  Google Scholar 

  8. Faure, P., Lesne, A.: Recurrence plots for symbolic sequences. Int. J. Bifurc. Chaos 20(06), 1731–1749 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Freeman, W.J.: Evidence from human scalp EEG of global chaotic itinerancy. Chaos 13(3), 1069 (2003)

    Article  Google Scholar 

  11. Friedrich, R., Uhl, C.: Spatio-temporal analysis of human electroencephalograms: Petit-Mal epilepsy. Phys. D 98, 171–182 (1996)

    Article  MATH  Google Scholar 

  12. Hu, J., Gao, J., Principe, J.C.: Analysis of biomedical signals by the Lempel-Ziv Complexity: the effect of finite data size. IEEE Trans. Biomed. Eng. 53(12), 2606–2609 (2006)

    Article  Google Scholar 

  13. Hutt, A., Riedel, H.: Analysis and modeling of quasi-stationary multivariate time series and their application to middle latency auditory evoked potentials. Phys. D 177, 203–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kennel, M.B., Abarbanel, H.D.I.: False neighbors and false strands: A reliable minimum embedding dimension algorithm. Phys. Rev. E 66(2), 026209 (2002)

    Article  Google Scholar 

  15. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  16. Kugiumtzis, D., Christophersen, N.D.: State space reconstruction: method of delays vs singular spectrum approach. Res. Rep. Httpurn Nb NoURN NBN No-35645 (1997)

    Google Scholar 

  17. Larralde, H., Leyvraz, F.: Metastability for Markov processes with detailed balance. Phys. Rev. Lett. 94(16), 160201 (2005)

    Article  Google Scholar 

  18. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 222(1), 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liebert, W., Schuster, H.G.: Proper choice of the time delay for the analysis of chaotic time series. Phys. Lett. A 142(2), 107–111 (1989)

    Article  MathSciNet  Google Scholar 

  20. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  21. Marwan, N., Kurths, J.: Line structures in recurrence plots. Phys. Lett. A 336, 349–357 (2005)

    Article  MATH  Google Scholar 

  22. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  23. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712 (1980)

    Article  Google Scholar 

  24. Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13(1), 3–270 (1890)

    Google Scholar 

  25. Sleigh, J.W., Leslie, K., Voss, L.: The effect of skin incision on the electroencephalogram during general anesthesia maintained with propofol or desflurane. J. Clin. Mon. Comput. 24, 307–318 (2010)

    Article  Google Scholar 

  26. Takens, F.: Detecting Strange Attractors in Turbulence. Springer (1981)

    Google Scholar 

  27. Tošić, T., Sellers, K.K., Fröhlich, F., Fedotenkova, M., beim Graben, P., Hutt, A.: Statistical frequency-dependent analysis of trial-to-trial variability in single time series by recurrence plots. Fronti. Syst. Neurosci. 9(184) (2016)

    Google Scholar 

  28. Yildiz, I.B., Kiebel, S.J.: A hierarchical neuronal model for generation and online recognition of birdsongs. PLoS Comput. Biol. 7, e1002303 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariia Fedotenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fedotenkova, M., Graben, P.b., Sleigh, J.W., Hutt, A. (2017). Time-Frequency Representations as Phase Space Reconstruction in Symbolic Recurrence Structure Analysis. In: Rojas, I., Pomares, H., Valenzuela, O. (eds) Advances in Time Series Analysis and Forecasting. ITISE 2016. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-55789-2_7

Download citation

Publish with us

Policies and ethics