Wind Speed Forecasting for a Large-Scale Measurement Network and Numerical Weather Modeling

  • Marek Brabec
  • Pavel Krc
  • Krystof Eben
  • Emil Pelikan
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

We investigate various problems encountered when forecasting wind speeds for a network of measurements stations using outputs of numerical weather prediction (NWP) model as one of the predictors in a statistical forecasting model. First, it is interesting to analyze prediction error properties for different station types (professional and amateur). Secondly, the statistical model can be viewed as a calibration of the original NWP model. Hence, careful semi-parametric smoothing of NWP input can discover various weak points of the NWP, and at the same time, it improves forecasting performance. It turns out that useful information is contained not only in the latest prediction available. It is beneficial to combine different horizon NWP predictions to one target time. GARCH sub-model for the residuals then shows complicated structure usable for short-term forecasts.

Keywords

Semiparametric modeling GAM Wind speed forecasting Numerical weather prediction model Measurement network 

References

  1. 1.
    Chen, N., Qian, Z., Nabney, I.T., Meng, X.: Wind power forecasts using gaussian processes and numerical weather prediction. IEEE Trans. Power Syst. 29(2), 656–664 (2014)CrossRefGoogle Scholar
  2. 2.
    Diggle, P.J., Heagerty, P., Liang, K.Y., Zeger, S.L.: Analysis of Longitudinal Data. OUP, Oxford (2002)MATHGoogle Scholar
  3. 3.
    Ghalanos, G.: rugarch: univariate GARCH models. R package version 1.3-6 (2015)Google Scholar
  4. 4.
    Giebel, G., Brownsword, R., Kariniotakis, G.: The state-of-the-art in shortterm prediction of wind power: a literature overview. Project ANEMOS, Deliverable Report D1.1 (2003). http://anemos.cma.fr/download/ANEMOS_D1.1_StateOfTheArt_v1.1.pdf
  5. 5.
    Glahn, B., Gilbert, K., Cosgrove, R., Ruth, D., Sheets, K.: The gridding of MOS. Weather Forecast. 24, 520–529 (2009)CrossRefGoogle Scholar
  6. 6.
    Johnston, J.: Econometric Methods. McGraw-Hill, New York (1984)Google Scholar
  7. 7.
    Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  8. 8.
    Laird, N.M., Ware, J.H.: Random-effects models for longitudinal data. Biometrics 38(4), 963–974 (1982)CrossRefMATHGoogle Scholar
  9. 9.
    Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., Yan, Z.: A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 13, 915–920 (2009)CrossRefGoogle Scholar
  10. 10.
    Mohandes, M., et al.: A neural networks approach for wind speed prediction. Renew. Energy 13(3), 345–354 (1998)CrossRefGoogle Scholar
  11. 11.
    R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). http://www.R-project.org/
  12. 12.
    Riahy, G.H., Abedi, M.: Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew. Energy 33(1), 35–41 (2008)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, London (2006)MATHGoogle Scholar
  15. 15.
    Weather Research and Forecasting Model. http://www.wrf-model.org/index.php

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marek Brabec
    • 1
    • 2
  • Pavel Krc
    • 1
    • 2
  • Krystof Eben
    • 1
    • 2
  • Emil Pelikan
    • 1
    • 2
  1. 1.Institute of Computer SciencePrague 8Czech Republic
  2. 2.Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in PraguePrague 6Czech Republic

Personalised recommendations