Skip to main content

Biochemical and Clinical Aspects of Hereditary Tyrosinemia Type 1

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 959))

Abstract

Inborn errors of metabolism (IEMs) are a group of diseases involving a genetic defect that alters a metabolic pathway and that presents usually during infancy. The tyrosine degradation pathway contains five enzymes, four of which being associated with IEMs. The most severe metabolic disorder associated with this catabolic pathway is hereditary tyrosinemia type 1 (HT1; OMIM 276700). HT1 is an autosomal recessive disease caused by a deficiency of fumarylacetoacetate hydrolase (FAH), the last enzyme of the tyrosine catabolic pathway. Although a rare disease worldwide, HT1 shows higher incidence in certain populations due to founder effects. The acute form of the disease is characterized by an early onset and severe liver failure while the chronic form appears later and also involves renal dysfunctions. Until 1992 the only treatment for this disease was liver transplantation. Since then, NTBC/Nitisone (a drug blocking the pathway upstream of FAH) is successfully used in combination with a diet low in tyrosine and phenylalanine, but patients are still at risk of developing hepatocellular carcinoma. This chapter summarizes the biochemical and clinical features of HT1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALA:

δ-aminolevulinic acid

ALAD:

δ-aminolevulinic acid dehydratase

BER:

Base excision repair

FAA:

Fumaryl acetoacetate

FAH:

Fumarylacetoacetate hydrolase

GSH:

Glutathione

HCC:

Hepatocellular carcinoma

HGA:

Homogentisic acid

HGO:

Homogentisic acid oxidase

HPD:

p-hydroxyphenylpyruvate dioxygenase

HT1:

Hereditary tyrosinemia

IEM:

Inborn errors of metabolism

MAA:

Maleyl acetoacetate

MAAI:

Maleyl acetoacetate isomerase also known as (ζ) 1 GSTZ1

OLT:

Orthotopic liver transplantation

PAH:

Phenylalanine hydroxylase

SAA:

Succinylacetone

TAT:

Tyrosine aminotransferase

TCA:

Trichloroacetic acid cycle

References

  • Allard P, Grenier A, Korson MS, Zytkovicz TH (2004) Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: analysis of succinylacetone extracted from dried blood spots. Clin Biochem 37(11):1010–1015. doi:S0009-9120(04)00202-4

    Article  CAS  PubMed  Google Scholar 

  • Angileri F, Bergeron A, Morrow G, Lettre F, Gray G, Hutchin T, Ball S (2015) Geographical and ethnic distribution of mutations of the fumarylacetoacetate hydrolase gene in hereditary tyrosinemia type 1. JIMD Rep 19:45–58. doi:10.1007/8904_2014_363

    Google Scholar 

  • Applegarth DA, Toone JR, Lowry RB (2000) Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics 105(1):e10

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DC, Preece MA, Holme E, Lloyd C, Newsome PN, McKiernan PJ (2013) Plasma succinylacetone is persistently raised after liver transplantation in tyrosinaemia type 1. J Inherit Metab Dis 36(1):15–20. doi:10.1007/s10545-012-9482-1

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DC, Lloyd C, McKiernan PJ, Newsome PN (2014) Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 37(5):745–752. doi:10.1007/s10545-014-9683-x

    Article  CAS  PubMed  Google Scholar 

  • Bateman RL, Bhanumoorthy P, Witte JF, McClard RW, Grompe M, Timm DE (2001) Mechanistic inferences from the crystal structure of fumarylacetoacetate hydrolase with a bound phosphorus-based inhibitor. J Biol Chem 276(18):15284–15291. doi:10.1074/jbc.M007621200

    Article  CAS  PubMed  Google Scholar 

  • Bateman RL, Ashworth J, Witte JF, Baker LJ, Bhanumoorthy P, Timm DE, Hurley TD, Grompe M, McClard RW (2007) Slow-onset inhibition of fumarylacetoacetate hydrolase by phosphinate mimics of the tetrahedral intermediate: kinetics, crystal structure and pharmacokinetics. Biochem J 402(2):251–260. doi:10.1042/BJ20060961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron A, Jorquera R, Orejuela D, Tanguay RM (2006) Involvement of endoplasmic reticulum stress in hereditary tyrosinemia type I. J Biol Chem 281(9):5329–5334. doi:M506804200

    Article  CAS  PubMed  Google Scholar 

  • Bliksrud YT, Ellingsen A, Bjoras M (2013) Fumarylacetoacetate inhibits the initial step of the base excision repair pathway: implication for the pathogenesis of tyrosinemia type I. J Inherit Metab Dis 36(5):773–778. doi:10.1007/s10545-012-9556-0

    Article  CAS  PubMed  Google Scholar 

  • De Braekeleer M, Larochelle J (1990) Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet 47(2):302–307

    PubMed  PubMed Central  Google Scholar 

  • de Laet C, Dionisi-Vici C, Leonard JV, McKiernan P, Mitchell G, Monti L, de Baulny HO, Pintos-Morell G, Spiekerkotter U (2013) Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 8:8. doi:1750-1172-8-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Demers SI, Russo P, Lettre F, Tanguay RM (2003) Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol 34(12):1313–1320. doi:S0046817703004064

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Canon JM, Baetscher MW, Finegold M, Burlingame T, Gibson KM, Grompe M (2002) Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol Cell Biol 22(13):4943–4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Lainez C, Ibarra-Gonzalez I, Belmont-Martinez L, Monroy-Santoyo S, Guillen-Lopez S, Vela-Amieva M (2014) Tyrosinemia type I: clinical and biochemical analysis of patients in Mexico. Ann Hepatol 13(2):265–272. doi:1090941

    CAS  PubMed  Google Scholar 

  • Forget S, Patriquin HB, Dubois J, Lafortune M, Merouani A, Paradis K, Russo P (1999) The kidney in children with tyrosinemia: sonographic, CT and biochemical findings. Pediatr Radiol 29(2):104–108

    Article  CAS  PubMed  Google Scholar 

  • Garrod AE (1902) About alkaptonuria. Med-Chir Trans 85:69–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grenier A, Belanger L, Laberge C (1976) alpha1-Fetoprotein measurement in blood spotted on paper: discriminating test for hereditary tyrosinemia in neonatal mass screening. Clin Chem 22(7):1001–1004

    CAS  PubMed  Google Scholar 

  • Grenier A, Lescault A, Laberge C, Gagne R, Mamer O (1982) Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia. Clin Chim Acta 123(1–2):93–99

    Article  CAS  PubMed  Google Scholar 

  • Grenier A, Cederbaum S, Laberge C, Gagne R, Jakobs C, Tanguay RM (1996) A case of tyrosinaemia type I with normal level of succinylacetone in the amniotic fluid. Prenat Diagn 16(3):239–242. doi:10.1002/(SICI)1097-0223(199603)16:3<239::AID-PD829>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Grompe M, Al-Dhalimy M (1995) Rapid nonradioactive assay for the detection of the common French Canadian tyrosinemia type I mutation. Hum Mutat 5(1):105. doi:10.1002/humu.1380050117

    Article  CAS  PubMed  Google Scholar 

  • Grompe M, St-Louis M, Demers SI, al-Dhalimy M, Leclerc B, Tanguay RM (1994) A single mutation of the fumarylacetoacetate hydrolase gene in French Canadians with hereditary tyrosinemia type I. N Engl J Med 331(6):353–357. doi:10.1056/NEJM199408113310603

    Article  CAS  PubMed  Google Scholar 

  • Hutchesson AC, Bundey S, Preece MA, Hall SK, Green A (1998) A comparison of disease and gene frequencies of inborn errors of metabolism among different ethnic groups in the West Midlands, UK. J Med Genet 35(5):366–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobs C, Stellaard F, Kvittingen EA, Henderson M, Lilford R (1990) First-trimester prenatal diagnosis of tyrosinemia type I by amniotic fluid succinylacetone determination. Prenat Diagn 10(2):133–134

    Article  CAS  PubMed  Google Scholar 

  • Jorquera R, Tanguay RM (1997) The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 232(1):42–48. (47). doi:http://dx.doi.org/10.1006/bbrc.1997.6220

    Article  CAS  PubMed  Google Scholar 

  • Jorquera R, Tanguay RM (2001) Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. Hum Mol Genet 10(17):1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Karnik D, Thomas N, Eapen CE, Jana AK, Oommen A (2004) Tyrosinemia type I: a clinico-laboratory case report. Indian J Pediatr 71(10):929–932

    Article  PubMed  Google Scholar 

  • Kvittingen EA, Jellum E, Stokke O (1981) Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 115(3):311–319

    Article  CAS  PubMed  Google Scholar 

  • Kvittingen EA, Halvorsen S, Jellum E (1983) Deficient fumarylacetoacetate fumarylhydrolase activity in lymphocytes and fibroblasts from patients with hereditary tyrosinemia. Pediatr Res 17(7):541–544. doi:10.1203/00006450-198307000-00005

    Article  CAS  PubMed  Google Scholar 

  • Kvittingen EA, Rootwelt H, Brandtzaeg P, Bergan A, Berger R (1993) Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect. J Clin Invest 91(4):1816–1821. doi:10.1172/JCI116393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvittingen EA, Rootwelt H, Berger R, Brandtzaeg P (1994) Self-induced correction of the genetic defect in tyrosinemia type I. J Clin Invest 94(4):1657–1661. doi:10.1172/JCI117509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langie SA, Knaapen AM, Houben JM, van Kempen FC, de Hoon JP, Gottschalk RW, Godschalk RW, van Schooten FJ (2007) The role of glutathione in the regulation of nucleotide excision repair during oxidative stress. Toxicol Lett 168(3):302–309. doi:S0378-4274(06)01335-X

    Article  CAS  PubMed  Google Scholar 

  • Langlois C, Jorquera R, Orejuela D, Bergeron A, Finegold MJ, Rhead WJ, Tanguay RM (2008) Rescue from neonatal death in the murine model of hereditary tyrosinemia by glutathione monoethylester and vitamin C treatment. Mol Genet Metab 93(3):306–313. doi:S1096-7192(07)00441-6

    Article  CAS  PubMed  Google Scholar 

  • Larochelle J, Alvarez F, Bussieres JF, Chevalier I, Dallaire L, Dubois J, Faucher F, Fenyves D, Goodyer P, Grenier A, Holme E, Laframboise R, Lambert M, Lindstedt S, Maranda B, Melancon S, Merouani A, Mitchell J, Parizeault G, Pelletier L, Phan V, Rinaldo P, Scott CR, Scriver C, Mitchell GA (2012) Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Quebec. Mol Genet Metab 107(1–2):49–54. doi:S1096-7192(12)00211-9

    Article  CAS  PubMed  Google Scholar 

  • Lee O, O’Brien PJ (2010) Modifications of mitochondrial function by toxicants. In: CA MQ (ed) Comprehensive toxicology. Elsevier, Oxford, pp 411–445

    Chapter  Google Scholar 

  • Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 74(10):4641–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340(8823):813–817. doi:0140-6736(92)92685-9

    Article  CAS  PubMed  Google Scholar 

  • McKiernan PJ (2006) Nitisinone in the treatment of hereditary tyrosinaemia type 1. Drugs 66(6):743–750. doi:6662

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GA, Grompe M, Lambert H, Tanguay RM (2001) Hypertyrosinemia. In: Scriver C, Beaudet A, Sly WSJ, Valle D (eds) The metabolic and molecular bases of inherited diseases, vol II, 8th edn. McGrawHill, New York, pp 1777–1805

    Google Scholar 

  • Mohan N, McKiernan P, Preece MA, Green A, Buckels J, Mayer AD, Kelly DA (1999) Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr 158(Suppl 2):S49–S54. doi:9158S049.431

    Article  PubMed  Google Scholar 

  • Mustonen A, Ploos van Amstel HK, Berger R, Salo MK, Viinikka L, Simola KO (1997) Mutation analysis for prenatal diagnosis of hereditary tyrosinaemia type 1. Prenat Diagn 17(10):964–966. doi:10.1002/(SICI)1097-0223(199710)17:10<964::AID-PD164>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Natt E, Kida K, Odievre M, Di Rocco M, Scherer G (1992) Point mutations in the tyrosine aminotransferase gene in tyrosinemia type II. Proc Natl Acad Sci U S A 89(19):9297–9301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niederwieser A, Matasovic A, Tippett P, Danks DM (1977) A new sulfur amino acid, named hawkinsin, identified in a baby with transient tyrosinemia and her mother. Clin Chim Acta 76(3):345–356

    Article  CAS  PubMed  Google Scholar 

  • Paradis K, Weber A, Seidman EG, Larochelle J, Garel L, Lenaerts C, Roy CC (1990) Liver transplantation for hereditary tyrosinemia: the Quebec experience. Am J Hum Genet 47(2):338–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phaneuf D, Labelle Y, Berube D, Arden K, Cavenee W, Gagne R, Tanguay RM (1991) Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am J Hum Genet 48(3):525–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phaneuf D, Lambert M, Laframboise R, Mitchell G, Lettre F, Tanguay RM (1992) Type 1 hereditary tyrosinemia. Evidence for molecular heterogeneity and identification of a causal mutation in a French Canadian patient. J Clin Invest 90(4):1185–1192. doi:10.1172/JCI115979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik LJ, van Spronsen FJ, Bijleveld CM, van Dael CM (2005) Renal function in tyrosinaemia type I after liver transplantation: a long-term follow-up. J Inherit Metab Dis 28(6):871–876. doi:10.1007/s10545-005-0059-0

    Article  CAS  PubMed  Google Scholar 

  • Poudrier J, St-Louis M, Lettre F, Gibson K, Prevost C, Larochelle J, Tanguay RM (1996) Frequency of the IVS12 + 5G-->A splice mutation of the fumarylacetoacetate hydrolase gene in carriers of hereditary tyrosinaemia in the French Canadian population of Saguenay-Lac-St-Jean. Prenat Diagn 16(1):59–64. doi:10.1002/(SICI)1097-0223(199601)16:1<59::AID-PD810>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  • Poudrier J, Lettre F, Scriver CR, Larochelle J, Tanguay RM (1998) Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol Genet Metab 64(2):119–125. doi:S1096-7192(98)92695-6

    Article  CAS  PubMed  Google Scholar 

  • Richardson DR, Mouralian C, Ponka P, Becker E (2001) Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta 1536(2–3):133–140

    Article  CAS  PubMed  Google Scholar 

  • Roth KS, Carter BE, Higgins ES (1991) Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome. Proc Soc Exp Biol Med 196(4):428–431

    Article  CAS  PubMed  Google Scholar 

  • Russo P, O’Regan S (1990) Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 47(2):317–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russo PA, Mitchell GA, Tanguay RM (2001) Tyrosinemia: a review. Pediatr Dev Pathol 4(3):212–221

    Article  CAS  PubMed  Google Scholar 

  • Schady DA, Roy A, Finegold MJ (2015) Liver tumors in children with metabolic disorders. Transl Pediatr 4(4):290–303. doi:10.3978/j.issn.2224-4336.2015.10.08

    PubMed  PubMed Central  Google Scholar 

  • Sniderman King L, Trahms C, Scott CR (2006 ) Tyrosinemia type 1. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K (eds). doi:http://www.ncbi.nlm.nih.gov/books/NBK1515/

  • St-Louis M, Tanguay RM (1997) Mutations in the fumarylacetoacetate hydrolase gene causing hereditary tyrosinemia type I: overview. Hum Mutat 9(4):291–299. doi:10.1002/(SICI)1098-1004(1997)9:4<291::AID-HUMU1>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  • St-Louis M, Leclerc B, Laine J, Salo MK, Holmberg C, Tanguay RM (1994) Identification of a stop mutation in five Finnish patients suffering from hereditary tyrosinemia type I. Hum Mol Genet 3(1):69–72

    Article  CAS  PubMed  Google Scholar 

  • Storr SJ, Woolston CM, Martin SG (2012) Base excision repair, the redox environment and therapeutic implications. Curr Mol Pharmacol 5(1):88–101. doi:EPub-Abstract-CMP-60

    Article  CAS  PubMed  Google Scholar 

  • Tanguay R (2002) Fumarylacetoacetate hydrolase. Wiley encyclopedia of molecular medicine. Wiley, New York

    Google Scholar 

  • Tanguay RM, Valet JP, Lescault A, Duband JL, Laberge C, Lettre F, Plante M (1990) Different molecular basis for fumarylacetoacetate hydrolase deficiency in the two clinical forms of hereditary tyrosinemia (type I). Am J Hum Genet 47(2):308–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanguay RM, Jorquera R, Poudrier J, St-Louis M (1996) Tyrosine and its catabolites: from disease to cancer. Acta Biochim Pol 43(1):209–216

    CAS  PubMed  Google Scholar 

  • Tanguay RM, Bergeron A, Jorquera R (2009) Hepatorenal tyrosinemia. In: Lifton RP, Somlo S, Giebsih D, Seldin DW (eds) Genetic diseases of the kidney, vol Chap 40. Elsevier, Amsterdam, pp 681–691

    Chapter  Google Scholar 

  • Timm DE, Mueller HA, Bhanumoorthy P, Harp JM, Bunick GJ (1999) Crystal structure and mechanism of a carbon-carbon bond hydrolase. Structure 7(9):1023–1033. doi:st7915

    Article  CAS  PubMed  Google Scholar 

  • Tomoeda K, Awata H, Matsuura T, Matsuda I, Ploechl E, Milovac T, Boneh A, Scott CR, Danks DM, Endo F (2000) Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Mol Genet Metab 71(3):506–510. doi:10.1006/mgme.2000.3085

    Article  CAS  PubMed  Google Scholar 

  • Tuchman M, Freese DK, Sharp HL, Ramnaraine ML, Ascher N, Bloomer JR (1987) Contribution of extrahepatic tissues to biochemical abnormalities in hereditary tyrosinemia type I: study of three patients after liver transplantation. J Pediatr 110(3):399–403

    Article  CAS  PubMed  Google Scholar 

  • van Dyk E, Steenkamp A, Koekemoer G, Pretorius PJ (2010) Hereditary tyrosinemia type 1 metabolites impair DNA excision repair pathways. Biochem Biophys Res Commun 401(1):32–36. doi:S0006-291X(10)01677-3

    Article  PubMed  Google Scholar 

  • van Spronsen FJ, Berger R, Smit GP, de Klerk JB, Duran M, Bijleveld CM, van Faassen H, Slooff MJ, Heymans HS (1989) Tyrosinaemia type I: orthotopic liver transplantation as the only definitive answer to a metabolic as well as an oncological problem. J Inherit Metab Dis 12(Suppl 2):339–342

    PubMed  Google Scholar 

  • van Spronsen FJ, Thomasse Y, Smit GP, Leonard JV, Clayton PT, Fidler V, Berger R, Heymans HS (1994) Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 20(5):1187–1191. doi:S027091399400340X

    Article  PubMed  Google Scholar 

  • van Spronsen FJ, Bijleveld CM, van Maldegem BT, Wijburg FA (2005) Hepatocellular carcinoma in hereditary tyrosinemia type I despite 2-(2 nitro-4-3 trifluoro- methylbenzoyl)-1, 3-cyclohexanedione treatment. J Pediatr Gastroenterol Nutr 40(1):90–93. doi:00005176-200501000-00017

    Article  PubMed  Google Scholar 

  • Vilboux T, Kayser M, Introne W, Suwannarat P, Bernardini I, Fischer R, O’Brien K, Kleta R, Huizing M, Gahl WA (2009) Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Hum Mutat 30(12):1611–1619. doi:10.1002/humu.21120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg AG, Mize CE, Worthen HG (1976) The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 88(3):434–438

    Article  CAS  PubMed  Google Scholar 

  • Wilcken B, Hammond JW, Howard N, Bohane T, Hocart C, Halpern B (1981) Hawkinsinuria: a dominantly inherited defect of tyrosine metabolism with severe effects in infancy. N Engl J Med 305(15):865–868. doi:10.1056/NEJM198110083051505

    Article  CAS  PubMed  Google Scholar 

  • Wyss PA, Boynton SB, Chu J, Spencer RF, Roth KS (1992) Physiological basis for an animal model of the renal Fanconi syndrome: use of succinylacetone in the rat. Clin Sci 83(1):81–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work on HT1 in the RMT’s lab was supported by grants from the Canadian Institutes of Health Research (CIHR) and Fondation du Grand Défi Pierre Lavoie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Tanguay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Morrow, G., Tanguay, R.M. (2017). Biochemical and Clinical Aspects of Hereditary Tyrosinemia Type 1. In: Tanguay, R. (eds) Hereditary Tyrosinemia. Advances in Experimental Medicine and Biology, vol 959. Springer, Cham. https://doi.org/10.1007/978-3-319-55780-9_2

Download citation

Publish with us

Policies and ethics