Skip to main content

Taurine Homeostasis and Volume Control

  • Chapter
  • First Online:
Glial Amino Acid Transporters

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 16))

Abstract

Taurine content is high (mM) in mammalian brain. By its major role as an osmolyte, taurine contributes to the cell volume control, which is particularly critical in the brain. Taurine participates in osmotic adjustments required to maintain the organization and size of intracellular compartments. It counteracts volume fluctuations in unbalanced transmembrane fluxes of ions and neurotransmitters, preserving the functional synaptic contacts. Taurine has a key role in the long-term adaptation to chronic hyponatremia as well as in other pathologies leading to brain edema. Together with other osmolytes, taurine corrects cell shrinkage, preventing mysfunction of organelles and apoptosis. Swelling corrective taurine efflux occurs through a leak pathway, likely formed by LCRR8 protein isoforms. Shrinkage-activated influx comes largely by the increased activity of the Na+/Cl-dependent transporter. The brain taurine pool results from the equilibrium between (i) dietary intake and active transport into the cell, (ii) synthesis in the brain itself or import of that synthesized elsewhere, and (iii) leak and posterior excretion. The interplay between these elements preserves brain taurine homeostasis in physiological conditions and permits the proper adjustments upon deviations of normal in the internal/external environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDO:

Cysteine dioxygenase

CSAD:

Cysteine sulfinic acid decarboxylase

KO:

Knockout

LCRR8:

Leucine-rich repeat containing 8

TAUT:

Taurine transporter

VRAC:

Volume-regulated anion channel

References

  • Albrecht J, Schousboe A. Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res. 2005;30(12):1615–21.

    Article  CAS  PubMed  Google Scholar 

  • Annunziato L, Boscia F, Pignataro G. Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab. 2013;33(7):969–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aydın AF, Çoban J, Doğan-Ekici I, Betül-Kalaz E, Doğru-Abbasoğlu S, Uysal M. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model. Metab Brain Dis. 2016;31(2):337–45.

    Article  PubMed  CAS  Google Scholar 

  • Banderali U, Roy G. Anion channels for amino acids in MDCK cells. Am J Phys. 1992;263(6 Pt 1):C1200–7.

    CAS  Google Scholar 

  • Basavappa S, Huang CC, Mangel AW, Lebedev DV, Knauf PA, Ellory JC. Swelling-activated amino acid efflux in the human neuroblastoma cell line CHP-100. J Neurophysiol. 1996;76(2):764–9.

    CAS  PubMed  Google Scholar 

  • Beetsch JW, Olson JE. Hyperosmotic exposure alters total taurine quantity and cellular transport in rat astrocyte cultures. Biochim Biophys Acta. 1996;1290(2):141–8.

    Article  PubMed  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43(5):1369–74.

    Article  CAS  PubMed  Google Scholar 

  • Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev. 1989;13(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  • Cardin V, Lezama R, Torres-Márquez ME, Pasantes-Morales H. Potentiation of the osmosensitive taurine release and cell volume regulation by cytosolic Ca2+ rise in cultured cerebellar astrocytes. Glia. 2003;44(2):119–28.

    Article  PubMed  Google Scholar 

  • Chan CY, Sun HS, Shah SM, Agovic MS, Friedman E, Banerjee SP. Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex. Eur J Pharmacol. 2014;728:167–75.

    Article  CAS  PubMed  Google Scholar 

  • Dawson R, Wallace DR, King MJ. Monoamine and amino acid content in brain regions of Brattleboro rats. Neurochem Res. 1990;15(7):755–61.

    Article  CAS  PubMed  Google Scholar 

  • Dominy J, Eller S, Dawson R. Building biosynthetic schools: reviewing compartmentation of CNS taurine synthesis. Neurochem Res. 2004;29(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  • Duarte JM, Do KQ, Gruetter R. Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging. 2014;35(7):1660–8.

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A, Shen CH, L’amoreaux WJ. Neuroprotective role of taurine during aging. Amino Acids. 2013;45(4):735–50.

    Article  PubMed  CAS  Google Scholar 

  • Eppler B, Dawson R Jr. The effects of aging on taurine content and biosynthesis in different strains of rats. Adv Exp Med Biol. 1998;442:55–61.

    Article  CAS  PubMed  Google Scholar 

  • Estévez AY, O’Regan MH, Song D, Phillis JW. Effects of anion channel blockers on hyposmotically induced amino acid release from the in vivo rat cerebral cortex. Neurochem Res. 1999;24:447–52.

    Article  PubMed  Google Scholar 

  • Frahm J, Michaelis T, Merboldt KD, Hanicke W, Gyngell ML, Chien D, et al. Localized NMR spectroscopy in vivo. Progress and problems. NMR Biomed. 1989;2(5–6):188–95.

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Shimada A, Wada M, Miyakawa S, Yamamoto A. Functional expression of taurine transporter and its up-regulation in developing neurons from mouse cerebral cortex. Pharm Res. 2006;23(4):689–96.

    Article  CAS  PubMed  Google Scholar 

  • Gebara E, Udry F, Sultan S, Toni N. Taurine increases hippocampal neurogenesis in aging mice. Stem Cell Res. 2015;14(3):369–79.

    Article  CAS  PubMed  Google Scholar 

  • Gharibani PM, Modi J, Pan C, Menzie J, Ma Z, Chen PC, Tao R, Prentice H, Wu JY. The mechanism of taurine protection against endoplasmic reticulum stress in an animal stroke model of cerebral artery occlusion and stroke-related conditions in primary neuronal cell culture. Adv Exp Med Biol. 2013;776:241–58.

    Article  CAS  PubMed  Google Scholar 

  • Giuliani C, Peri A. Effects of hyponatremia on the brain. J Clin Med. 2014;3(4):1163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschall-Pass KT, Gorecki DK, Paterson PG. Effect of taurine deficiency on tissue taurine concentrations and pregnancy outcome in the rat. Can J Physiol Pharmacol. 1995;73(8):1130–5.

    Article  CAS  PubMed  Google Scholar 

  • Han X, Chesney RW. Mechanisms of regulation of taurine transporter activity: a complex interplay of regulatory systems. Adv Exp Med Biol. 2006;583:79–90.

    Article  CAS  PubMed  Google Scholar 

  • Haskew-Layton RE, Rudkouskaya A, Jin Y, Feustel PJ, Kimelberg HK, Mongin AA. Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo. PLoS One. 2008;3(10):e3543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes KC, Sturman JA. Taurine in metabolism. Annu Rev Nutr. 1981;1:401–25.

    Article  CAS  PubMed  Google Scholar 

  • Hayes KC, Carey RE, Schmidt SY. Retinal degeneration associated with taurine deficiency in the cat. Science. 1975;188(4191):949–51.

    Article  CAS  PubMed  Google Scholar 

  • Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U, Häussinger D. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. 2002;16(2):231–3.

    CAS  PubMed  Google Scholar 

  • Hernández-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G. Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res. 2010a;88(8):1673–81.

    PubMed  Google Scholar 

  • Hernández-Benitez R, Pasantes-Morales H, Pinzon-Estrada E, Ramos-Mandujano G. Functional expression and subcellular localization of the taurine transporter TauT in murine neural precursors. Dev Neurosci. 2010b;32(4):321–8.

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Benitez R, Vangipuram SD, Ramos-Mandujano G, Lyman WD, Pasantes-Morales H. Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci. 2013;35(1):40–9.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J Physiol. 1983;338:613–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev. 2009;89(1):193–277.

    Article  CAS  PubMed  Google Scholar 

  • Hussy N, Brès V, Rochette M, Duvoid A, Alonso G, Dayanithi G, Moos FC. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci. 2001;21(18):7110–6.

    CAS  PubMed  Google Scholar 

  • Huxtable RJ. The interaction between taurine, calcium and phospholipids: further investigations of a trinitarian hypothesis. Prog Clin Biol Res. 1990;351:185–96.

    CAS  PubMed  Google Scholar 

  • Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72(1):101–63.

    CAS  PubMed  Google Scholar 

  • Huxtable RJ, Lippincott SE. Diet and biosynthesis as sources of taurine in the mouse. J Nutr. 1982a;112(5):1003–10.

    CAS  PubMed  Google Scholar 

  • Huxtable RJ, Lippincott SE. Relative contribution of diet and biosynthesis to the taurine content of the adult rat. Drug Nutr Interact. 1982b;1(2):153–68.

    CAS  PubMed  Google Scholar 

  • Hyzinski-Garcia MC, Rudkouskaya A, Mongin AA. LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. J Physiol. 2014;592(22):4855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Oishi S, Takai M, Kimura Y, Uozumi Y, Fujio Y, Schaffer SW, Azuma J. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci. 2010;17(Suppl 1):S20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. 2012;42(6):2223–32.

    Article  CAS  PubMed  Google Scholar 

  • Junankar PR, Kirk K. Organic osmolyte channels: a comparative view. Cell Physiol Biochem. 2000;10(5–6):355–60.

    CAS  PubMed  Google Scholar 

  • Kahle KT, Khanna AR, Alper SL, Adragna NC, Lauf PK, Sun D, et al. K-Clcotransporters, cell volume homeostasis, and neurological disease. Trends Mol Med. 2015;21(8):513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kengne G, Nicaise F, Soupart C, Boom A, Schiettecatte J, Pochet R, Brion JP, Decaux G. Astrocytes are an early target in osmotic demyelination syndrome. J Am Soc Nephrol. 2011;22(10):1834–45.

    Article  CAS  Google Scholar 

  • Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM. Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res. 2014;5(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  • Kontro P, Marnela KM, Oja SS. Free amino acids in the synaptosome and synaptic vesicle fractions of different bovine brain areas. Brain Res. 1980;184(1):129–41.

    Article  CAS  PubMed  Google Scholar 

  • Laidlaw SA, Grosvenor M, Kopple JD. The taurine content of common foodstuff. J Parent Nutr. 1990;14(2):183–8.

    Article  CAS  Google Scholar 

  • Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine--from organism to organelle. Acta Physiol. 2015;213(1):191–212.

    Article  CAS  Google Scholar 

  • Larsson OM, Griffiths R, Allen IC, Schousboe A. Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and beta-alanine carriers in both cell types. J Neurochem. 1986;47(2):426–32.

    Article  CAS  PubMed  Google Scholar 

  • Law RO. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim Biophys Acta. 1994;1221(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Nelson H, Mandiyan S, Nelson N. Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc Natl Acad Sci U S A. 1992;89(24):12145–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel P, Pasantes-Morales H. Taurine in the nervous system. In: Ehrenpreis S, Kopin I, editors. Reviews in neuroscience, vol. 3. New York: Raven Press; 1978. p. 158–93.

    Google Scholar 

  • Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46(1):7–20.

    Article  CAS  PubMed  Google Scholar 

  • Massieu L, Montiel T, Robles G, Quesada O. Brain amino acids during hyponatremia in vivo: clinical observations and experimental studies. Neurochem Res. 2004;29(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  • Menzie J, Prentice H, Wu JY. Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci. 2013;3(2):877–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagelhus EA, Lehmann A, Ottersen OP. Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex. Neuroscience. 1993;54(3):615–31.

    Article  CAS  PubMed  Google Scholar 

  • Neuringer M, Palackal T, Kujawa M, Moretz RC, Sturman JA. Visual cortex development in rhesus monkeys deprived of dietary taurine. Prog Clin Biol Res. 1990;351:415–22.

    CAS  PubMed  Google Scholar 

  • Oenarto J, Görg B, Moos M, Bidmon HJ, Häussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys. 2014;560:59–72.

    Article  CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P. Taurine release and swelling of cerebral cortex slices from adult and developing mice in media of different ionic compositions. J Neurosci Res. 1992;32(4):551–61.

    Article  CAS  PubMed  Google Scholar 

  • Oja SS, Saransaari P. Ischemia induces release of endogenous amino acids from the cerebral cortex and cerebellum of developing and adult mice. J Amino Acids. 2013;2013:839036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oja SS, Saransaari P. Open questions concerning taurine with emphasis on the brain. AdvExp Med Biol. 2015;803:409–13.

    Article  Google Scholar 

  • Ordaz B, Vaca L, Franco R, Pasantes-Morales H. Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K+ channels. Am J Phys Cell Phys. 2004;286(6):C1399–409.

    Article  CAS  Google Scholar 

  • Paban V, Fauvelle F, Alescio-Lautier B. Age-related changes in metabolic profiles of rat hippocampus and cortices. Eur J Neurosci. 2010;31(6):1063–73.

    Article  PubMed  Google Scholar 

  • Park E, Park SY, Dobkin C, Schuller-Levis G. Development of a novel cysteine sulfinic Acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids. 2014;34:68–09.

    Google Scholar 

  • Pasantes-Morales H, Quesada O, Alcocer L, Sánchez Olea R. Taurine content in foods. Nutr Report Intern. 1989;40:793–801.

    CAS  Google Scholar 

  • Pasantes-Morales H, Alavez S, Sánchez Olea R, Morán J. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem Res. 1993;18(4):445–52.

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Quesada O, Morán J. Taurine: an osmolyte in mammalian tissues. Adv Exp Med Biol. 1998;442:209–17.

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Ochoa de la Paz LD, Sepúlveda J, Quesada O. Amino acids as osmolytes in the retina. Neurochem Res. 1999;24(11):1339–46.

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, O’Regan MH. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int. 2003;43(4–5):461–7.

    Article  CAS  PubMed  Google Scholar 

  • Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, et al. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J. 2015;34(24):2993–3008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prentice H, Modi JP, Wu JY. Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxidative Med Cell Longev. 2015;2015:964518.

    Article  Google Scholar 

  • Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014;157(2):447–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassin DK. Taurine, cysteinesulfinic acid decarboxylase and glutamic acid in brain. Adv Exp Med Biol. 1981;139:257–71.

    Article  CAS  PubMed  Google Scholar 

  • Rassin DK, Sturman JA, Gaull GE. Taurine and other free amino acids in milk of man and other mammals. Early Hum Dev. 1978;2(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  • Reymond I, Almarghini K, Tappaz M. Immunocytochemical localization of cysteine sulfinate decarboxylase in astrocytes in the cerebellum and hippocampus: a quantitative double immunofluorescence study with glial fibrillary acidic protein and S-100 protein. Neuroscience. 1996;75(2):619–33.

    Article  CAS  PubMed  Google Scholar 

  • Ricci L, Valoti M, Sgaragli G, Frosini M. Protection by taurine of rat brain cortical slices against oxygen glucose deprivation- and reoxygenation-induced damage. Eur J Pharmacol. 2009;621(1–3):26–32.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Olea R, Moran J, Schousboe A, Pasantes-Morales H. Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion. Neurosci Lett. 1991;130(2):233–6.

    Article  PubMed  Google Scholar 

  • Sánchez-Olea R, Moran J, Pasantes-Morales H. Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes. J Neurosci Res. 1992;32(1):86–92.

    Article  PubMed  Google Scholar 

  • Schousboe A, Pasantes-Morales H. Role of taurine in neural cell volume regulation. Can J Physiol Pharmacol. 1992;70(Suppl):S356–61.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Sánchez Olea R, Moran J, Pasantes-Morales H. Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport. J Neurosci Res. 1991;30(4):661–5.

    Article  CAS  PubMed  Google Scholar 

  • Schuller-Levis GB, Park E. Taurine: new implications for an old amino acid. FEMS Microbiol Lett. 2003;226(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  • Shennan DB. Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol Biochem. 2008;21(1-3):15–28.

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Jong CJ, Takahashi K, Schaffer SW. Role of ROS production and turnover in the antioxidant activity of taurine. Adv Exp Med Biol. 2015;803:581–96.

    Article  PubMed  Google Scholar 

  • Smith KE, Borden LA, Wang CH, Hartig PR, Branchek TA, Weinshank RL. Cloning and expression of a high affinity taurine transporter from rat brain. Mol Pharmacol. 1992;42(4):563–9.

    CAS  PubMed  Google Scholar 

  • Spaeth DG, Schneider DL. Turnover of taurine in rat tissues. J Nutr. 1974;104(2):179–86.

    CAS  PubMed  Google Scholar 

  • Sturman J. Review: taurine deficiency and the cat. Adv Exp Med Biol. 1992;315:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA. Nutritional taurine and central nervous system development. Ann N Y Acad Sci. 1986;477:196–213.

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Gaull GE. Taurine in the brain and liver of the developing human and monkey. J Neurochem. 1975;25(6):831–5.

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Messing JM, Rossi SS, Hofmann AF, Neuringer M. Tissue taurine content, activity of taurine synthesis enzymes and conjugated bile acid composition of taurine-deprived and taurine-supplemented rhesus monkey infants at 6 and 12 mo of age. J Nutr. 1991;121(6):854–62.

    CAS  PubMed  Google Scholar 

  • Sun M, Xu C. Neuroprotective mechanism of taurine due to up-regulating calpastatin and down-regulating calpain and caspase-3 during focal cerebral ischemia. Cell Mol Neurobiol. 2008;28(4):593–611.

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Gu Y, Zhao Y, Xu C. Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids. 2011;40(5):1419–29.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Wada T, Saigo K, Watanabe K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 2002;21(23):6581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tappaz ML. Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res. 2004;29(1):83–96.

    Article  CAS  PubMed  Google Scholar 

  • Trachtman H. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II. Pediatr Nephrol. 1992;6(1):104–12.

    Article  CAS  PubMed  Google Scholar 

  • Tuz K, Peña-Segura C, Franco R, Pasantes-Morales H. Depolarization, exocytosis and amino acid release evoked by hyposmolarity from cortical synaptosomes. Eur J Neurosci. 2004;19(4):916–24.

    Article  PubMed  Google Scholar 

  • Verbalis JG, Gullans SR. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 1991;567(2):274–82.

    Article  CAS  PubMed  Google Scholar 

  • Vitvitsky V, Garg SK, Banerjee R. Taurine biosynthesis by neurons and astrocytes. J Biol Chem. 2011;286(37):32002–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voaden MJ, Lake N, Marshall J, Morjaria B. Studies on the distribution of taurine and other neuroactive amino acids in the retina. Exp Eye Res. 1977;25(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  • Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014;344(6184):634–8.

    Article  CAS  PubMed  Google Scholar 

  • Vyas S, Bradford HF. Co-release of acetylcholine, glutamate and taurine from synaptosomes of Torpedo electric organ. Neurosci Lett. 1987;82(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  • Wallace DR, Dawson R Jr. Decreased plasma taurine in aged rats. Gerontology. 1990;36(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  • Warskulat U, Flögel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW, Molojavyi A, Heller-Stilb B, Schrader J, Häussinger D. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J. 2004;18(3):577–9.

    CAS  PubMed  Google Scholar 

  • Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, et al. Phenotype of the taurine transporter knockout mouse. Methods Enzymol. 2007;428:439–58.

    Article  CAS  PubMed  Google Scholar 

  • Worden JA, Stipanuk MH. A comparison by species, age and sex of cysteinesulfinate decarboxylase activity and taurine concentration in liver and brain of animals. Comp Biochem Physiol B. 1985;82(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  • Ye HB, Shi HB, Yin SK. Mechanisms underlying taurine protection against glutamate-induced neurotoxicity. Can J Neurol Sci. 2013;40(5):628–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is supported by Dirección General de Asuntos del Personal Académico (DGAPA) at the Universidad Nacional Autónoma de México (UNAM), Grant No. PAPIIT IN205916.

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herminia Pasantes-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pasantes-Morales, H. (2017). Taurine Homeostasis and Volume Control. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_3

Download citation

Publish with us

Policies and ethics