HINE: Heterogeneous Information Network Embedding

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10177)

Abstract

Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, we propose an HIN embedding model (HINE), which consists of local and global semantic embedding. Local semantic embedding aims to incorporate entity type information via embedding the local structures and types of the entities in a supervised way. Global semantic embedding leverages multi-hop relation types among entities to propagate the global semantics via a Markov Random Field (MRF) to impact the embedding vectors. By doing so, HINE is capable to capture both local and global semantic information in the embedding vectors. Experimental results show that HINE significantly outperforms state-of-the-art methods.

Keywords

Heterogeneous information network Network embedding Semantic embedding 

References

  1. 1.
    Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: WWW, pp. 37–48 (2013)Google Scholar
  2. 2.
    Al Shalabi, L., Shaaban, Z., Kasasbeh, B.: Data mining: a preprocessing engine. J. Comput. Sci. 2(9), 735–739 (2006)CrossRefGoogle Scholar
  3. 3.
    Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics, pp. 115–148. Springer, US (2011)Google Scholar
  4. 4.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)Google Scholar
  5. 5.
    Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global structural information. In: CIKM, pp. 891–900 (2015)Google Scholar
  6. 6.
    Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp. 1145–1152 (2016)Google Scholar
  7. 7.
    Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: KDD, pp. 119–128 (2015)Google Scholar
  8. 8.
    Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)MATHGoogle Scholar
  9. 9.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. JMLR 9, 1871–1874 (2008)MATHGoogle Scholar
  10. 10.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD (2016)Google Scholar
  12. 12.
    Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL, pp. 687–696 (2015)Google Scholar
  13. 13.
    Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: AAAI, pp. 985–991 (2016)Google Scholar
  14. 14.
    Ley, M.: DBLP: some lessons learned. VLDB 2, 1493–1500 (2009)Google Scholar
  15. 15.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)CrossRefGoogle Scholar
  16. 16.
    Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: EMNLP, pp. 705–714 (2015)Google Scholar
  17. 17.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)Google Scholar
  18. 18.
    van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605 (2008)MATHGoogle Scholar
  19. 19.
    Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: Advances in Neural Information Processing Systems, pp. 121–128 (2008)Google Scholar
  20. 20.
    Meng, C., Cheng, R., Maniu, S., Senellart, P., Zhang, W.: Discovering meta-paths in large heterogeneous information networks. In: WWW, pp. 754–764 (2015)Google Scholar
  21. 21.
    Ou, M., Cui, P., Pei, J., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: KDD (2016)Google Scholar
  22. 22.
    Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI, pp. 1895–1901 (2016)Google Scholar
  23. 23.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD, pp. 701–710 (2014)Google Scholar
  24. 24.
    Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. CRC Press, Boca Raton (2005)CrossRefMATHGoogle Scholar
  25. 25.
    Sun, Y., Han, J., Gao, J., Yu, Y.: iTopicModel: information network-integrated topic modeling. In: 2009 Ninth IEEE International Conference on Data Mining, pp. 493–502 (2009)Google Scholar
  26. 26.
    Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. In: VLDB, 992–1003 (2011)Google Scholar
  27. 27.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)Google Scholar
  28. 28.
    Tang, L., Liu, H.: Scalable learning of collective behavior based on sparse social dimensions. In: CIKM, pp. 1107–1116 (2009)Google Scholar
  29. 29.
    Tang, L., Liu, H.: Leveraging social media networks for classification. In: DMKD, pp. 447–478 (2011)Google Scholar
  30. 30.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  31. 31.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685 (2009)Google Scholar
  32. 32.
    Wang, C., Duan, N., Zhou, M., Zhang, M.: Paraphrasing adaptation for web search ranking. In: ACL, pp. 41–46 (2013)Google Scholar
  33. 33.
    Wang, C., Song, Y., El-Kishky, A., Roth, D., Zhang, M., Han, J.: Incorporating world knowledge to document clustering via heterogeneous information networks. In: KDD, pp. 1215–1224 (2015)Google Scholar
  34. 34.
    Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: Knowsim: a document similarity measure on structured heterogeneous information networks. In: ICDM, pp. 1015–1020 (2015)Google Scholar
  35. 35.
    Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: Text classification with heterogeneous information network kernels. In: AAAI, pp. 2130–2136 (2016)Google Scholar
  36. 36.
    Wang, C., Song, Y., Roth, D., Wang, C., Han, J., Ji, H., Zhang, M.: Constrained information-theoretic tripartite graph clustering to identify semantically similar relations. In: IJCAI, pp. 3882–3889 (2015)Google Scholar
  37. 37.
    Wang, C., Song, Y., Roth, D., Zhang, M., Han, J.: World knowledge as indirect supervision for document clustering. TKDD 11(2), 13:1–13:36 (2016)Google Scholar
  38. 38.
    Wang, C., Sun, Y., Song, Y., Han, J., Song, Y., Wang, L., Zhang, M.: Relsim: relation similarity search in schema-rich heterogeneous information networks. In: SDM (2016)Google Scholar
  39. 39.
    Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: KDD (2016)Google Scholar
  40. 40.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)Google Scholar
  41. 41.
    Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI, pp. 2111–2117 (2015)Google Scholar
  42. 42.
    Yu, X., Sun, Y., Norick, B., Mao, T., Han, J.: User guided entity similarity search using meta-path selection in heterogeneous information networks. In: CIKM, pp. 2025–2029 (2012)Google Scholar
  43. 43.
    Zhou, Y., Liu, L.: Activity-edge centric multi-label classification for mining heterogeneous information networks. In: KDD, pp. 1276–1285 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Key Laboratory of High Confidence Software Technologies (Ministry of Education)EECS, Peking UniversityBeijingChina
  2. 2.IBM Research AlmadenSan JoseUSA

Personalised recommendations