Niche Constructing Drawing Robots

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10198)

Abstract

This paper describes a series of experiments in creating autonomous drawing robots that generate aesthetically interesting and engaging drawings. Based on a previous method for multiple software agents that mimic the biological process of niche construction, the challenge in this project was to re-interpret the implementation of a set of evolving software agents into a physical robotic system. In this new robotic system, individual robots try to reinforce a particular niche defined by the density of the lines drawn underneath them. The paper also outlines the role of environmental interactions in determining the style of drawing produced.

References

  1. 1.
    Begon, M., Townsend, C., Harper, J.: Ecology: from individuals to ecosystems. Wiley-Blackwell, Maldon (2006)Google Scholar
  2. 2.
    Bird, J., Husbands, P., Perris, M., Bigge, B., Brown, P.: Implicit fitness functions for evolving a drawing robot. In: Giacobini, M. (ed.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 473–478. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78761-7_50 CrossRefGoogle Scholar
  3. 3.
    Boden, M.A.: Creativity and Art: Three Roads to Surprise. Oxford University Press, Chicago (2010)Google Scholar
  4. 4.
    Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)CrossRefGoogle Scholar
  5. 5.
    Chappell, D.: Taking a point for a walk: Pattern formation with self-interacting curves. In: Greenfield, G., Hart, G., Sarhangi, R. (eds.) Bridges 2014 Conference Proceedings, pp. 337–340. Tessellations Publishing, Phoenix, Arizona (2014)Google Scholar
  6. 6.
    Chappell, D.: Sinuous meander patterns: a family of multi-frequency spatial RHYHMS. J. Math. Arts 9(3–4), 63–76 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Day, R.L., Laland, K.N., Odling-Smee, J.: Rethinking adaptation: the niche-construction perspective. Perspect. Biol. Med. 46(1), 80–95 (2003)CrossRefGoogle Scholar
  8. 8.
    d’Inverno, M., McCormack, J.: Heroic vs collaborative AI for the arts. In: Proceedings of IJCAI 2015 (2015)Google Scholar
  9. 9.
    Dohm, K., Hoffmann, J.: Kunstmaschinen Maschinenkunst (Art Machines, Machine Art). Kehrer Verlag, bilingual (German/English) edn. (2008)Google Scholar
  10. 10.
    Eisner, T.: For Love of Insects. The Belknap Press of Harvard University Press, Cambridge (2003)Google Scholar
  11. 11.
    Greenfield, G.: A platform for evolving controllers for simulated drawing robots. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 108–116. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29142-5_10 CrossRefGoogle Scholar
  12. 12.
    Greenfield, G.: Avoidance drawings evolved using virtual drawing robots. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 78–88. Springer, Cham (2015). doi:10.1007/978-3-319-16498-4_8 Google Scholar
  13. 13.
    Greenfield, G.: Robot paintings evolved using simulated robots. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 611–621. Springer, Heidelberg (2006). doi:10.1007/11732242_58 CrossRefGoogle Scholar
  14. 14.
    Grimm, V., Railsback, S.F.: Individual-based Modeling and Ecology, Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton (2005)MATHGoogle Scholar
  15. 15.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  16. 16.
    Lucas, G.W.: An elementary model for the differential steering system of robot actuators. Technical report, The Rossum Project (2000). http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html
  17. 17.
    McCormack, J.: Enhancing creativity with niche construction. In: Fellerman, H., Dörr, M., Hanczyc, M.M., Laursen, L.L., Maurer, S., Merkle, D., Monnard, P.A., Stoy, K., Rasmussen, S. (eds.) Artificial Life XII, pp. 525–532. MIT Press, Cambridge (2010)Google Scholar
  18. 18.
    McCormack, J.: Creative ecosystems. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, Chap. 2, pp. 39–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    McCormack, J.: Aesthetics, art, evolution. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 1–12. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36955-1_1 CrossRefGoogle Scholar
  20. 20.
    Moura, L.: Machines that make art. In: Herath, D., Kroos, C., Stelarc, (eds.) Robots and Art, Cognitive Science and Technology, pp. 255–269. Springer, Heidelberg (2016)Google Scholar
  21. 21.
    Moura, L., Pereira, H.G.: Man + Robots – Symbiotic Art. LxXL, Black and white facsimile edn. (2014)Google Scholar
  22. 22.
    Odling-Smee, J., Laland, K.N., Feldman, W.M.: Niche Construction: The Neglected Process in Evolution. Monographs in Population Biology. Princeton University Press, Princeton (2003)Google Scholar
  23. 23.
    Perlin, K.: Improving noise. ACM Trans. Graph. (TOG) 21(3), 681–682 (2002)CrossRefGoogle Scholar
  24. 24.
    Roudavski, S., McCormack, J.: Post-anthropcentric creativity. Digital Creativity 27(1), 3–6 (2016)CrossRefGoogle Scholar
  25. 25.
    Still, A., d’Inverno, M.: A history of creativity for future AI research. In: Pachet, F., Cardoso, A., Corruble, V., Ghedini, F. (eds.) Proceedings of the Seventh International Conference on Computational Creativity (ICCC 2016), pp. 147–154, June 2016Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.sensiLab, Faculty of Information TechnologyMonash UniversityCaulfield EastAustralia

Personalised recommendations