Skip to main content

Finite Sample Behavior of MLE in Network Autocorrelation Models

  • Conference paper
  • First Online:

Abstract

This work evaluates the finite sample behavior of ML estimators in network autocorrelation models, a class of auto-regressive models studying the network effect on a variable of interest. Through an extensive simulation study, we examine the conditions under which these estimators are normally distributed in the case of finite samples. The ML estimators of the autocorrelation parameter have a negative bias and a strongly asymmetric sampling distribution, especially for high values of the network effect size and the network density. In contrast, the estimator of the intercept is positively biased but with an asymmetric sampling distribution. Estimators of the other regression parameters are unbiased, with heavy tails in presence of non-normal errors. This occurs not only in randomly generated networks but also in well-established network structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Doreian, P.: Linear models with spatially distributed data: spatial disturbances or spatial effects? Sociol. Methods Res. 9, 29–60 (1980)

    Article  Google Scholar 

  2. Doreian, P., Teuter, K., Wang, C.H.: Network autocorrelation models: some Monte Carlo results. Sociol. Methods Res. 13, 155–200 (1984)

    Article  Google Scholar 

  3. Dow, M.M., Burton, M.L., White, D.R.: Network autocorrelation: a simulation study of a foundational problem in regression and survey research. Soc. Netw. 4, 169–200 (1982)

    Article  Google Scholar 

  4. Marsden, P.V., Friedkin, N.E.: Network studies of social influence. Sociol. Methods Res. 22, 127–151 (1993)

    Article  Google Scholar 

  5. Mizruchi, M.S., Neuman, E.J.: The effect of density on the level of bias in the network autocorrelation model. Soc. Netw. 30, 190–200 (2008)

    Article  Google Scholar 

  6. Neuman, E.J., Mizruchi, M.S.: Structure and bias in the network autocorrelation model. Soc. Netw. 32, 290–300 (2010)

    Article  Google Scholar 

  7. Leenders, R.T.A.: Modeling social influence through network autocorrelation: constructing the weight matrix. Soc. Netw. 24, 21–47 (2002)

    Article  Google Scholar 

  8. De Nooy, W.: Communication in natural resource management: agreement between and disagreement within stakeholder groups. Ecol. Soc. 18(2), 44 (2013). https://doi.org/10.5751/ES-05648-180244. (Available via DIALOG)

    Article  Google Scholar 

  9. Dow, M.M., Eff, E.A.: Global, regional, and local network autocorrelation in the standard cross-cultural sample. Cross Cult. Res. 42, 148–171 (2008)

    Article  Google Scholar 

  10. Franzese Jr., R.J., Hays, J.C., Kachi, A., Alvarez, R.M., Freeman, J.R., Jackson, J.E.: Modeling history dependence in network-behavior coevolution. Polit. Anal. 20, 175–190 (2012)

    Article  Google Scholar 

  11. Vitale, M.P., Porzio, G.C., Doreian, P.: Examining the effect of social influence on student performance through network autocorrelation models. J. Appl. Stat. 43, 115–127 (2016)

    Article  MathSciNet  Google Scholar 

  12. Dow, M.M.: Galton’s problem as multiple network autocorrelation effects cultural trait transmission and ecological constraint. Cross Cult. Res. 41, 336–363 (2007)

    Article  Google Scholar 

  13. Zhang, B., Thomas, A.C., Doreian, P., Krackhardt, D., Krishnan, R.: Contrasting multiple social network autocorrelations for binary outcomes with applications to technology adoption. ACM T. Man. Inf. Syst. 3, 1–21 (2013)

    Google Scholar 

  14. Fujimoto, K., Chou, C.P., Valente, T.W.: The network autocorrelation model using two-mode data: affiliation exposure and potential bias in the autocorrelation parameter. Soc. Netw. 33, 231–243 (2011)

    Article  Google Scholar 

  15. Wang, W., Neuman, E.J., Newman, D.A.: Statistical power of the social network autocorrelation model. Soc. Netw. 38, 88–99 (2014)

    Article  Google Scholar 

  16. Farber, S., Páez, A., Volz, E.: Topology and dependency tests in spatial and network autoregressive models. Geogr. Anal. 41, 158–180 (2009)

    Article  Google Scholar 

  17. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele La Rocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

La Rocca, M., Porzio, G.C., Vitale, M.P., Doreian, P. (2018). Finite Sample Behavior of MLE in Network Autocorrelation Models. In: Mola, F., Conversano, C., Vichi, M. (eds) Classification, (Big) Data Analysis and Statistical Learning. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-55708-3_5

Download citation

Publish with us

Policies and ethics