Abstract
We consider an explorative method for unsupervised clustering of upper level units in a two-level hierarchical setting. The idea lies in applying a density-based clustering algorithm to the predicted random effects obtained from a multilevel cumulative logit model. We illustrate the proposed approach throughout the analysis of data from European Social Survey about political trust in European countries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Details on HDI are at http://essedunet.nsd.uib.no/cms/topics/multilevel/ch6/all.html.
References
Aitkin, M.: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55, 117–128 (1999)
Azzimonti, L., Ieva, F., Paganoni, A.M.: Nonlinear nonparametric mixed-effects models for unsupervised classification. Comput. Stat. 28, 1549–1570 (2013)
Asparouhov, T., Muthén, B.: Multilevel mixture models. In: Hancock, G.R. and Samuelsen, K.M. (Eds.) Advances in latent variable mixture models, pp. 27–51, Charlotte, NC: Infurmation Age Publishing (2008)
Azzalini, A., Menardi, G.: Clustering via nonparametric density estimation: the R Package pdfCluster. J. Stat. Software 57, 1–26 (2014)
Azzalini, A., Torelli, N.: Clustering via nonparametric density estimation. Statist. Computing 17, 71–80 (2007)
Grilli, L., Rampichini, C.: Multilevel models for ordinal data. In: Kenett, R. and Salini, S. (eds.) Modern Analysis of Customer Surveys: with Applications using R., Chapter 19, Wiley (2012)
Heinzl, F., Tutz, G.: Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm. Stat. Modell. 13, 41–67 (2013)
Lukociene, O., Varriale, R., Vermunt, J.K.: The simultaneous decision(s) about the number of lower- and higher-level classes in multilevel latent class analysis. Sociological Meth. 40, 247–283 (2010)
Menardi, G., Azzalini, A.: An advancement in clustering via nonparametric density estimation. Statist. Computing 124, 753–767 (2014)
McCulloch, C.E., Neuhaus, J.M.: Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics 67, 270–279 (2011)
McCulloch, M.E., Neuhaus, J.M.: Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Stat. Sci. 26, 388–402 (2011)
Nylund, K.L., Asparouhov, T., Muthén, B.O.: Deciding the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct. Equat. Model. 14, 535–569 (2007)
Ohlssen, D.I., Sharples, L.D., Spiegelhalter, D.J.: Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Statist. Med. 26, 2088–2112 (2007)
Skrondal, A., Rabe-Hesketh, S.: Prediction in multilevel generalized linear models. J. R. Stat. Soc. Ser. A 172, 659–687 (2009)
Vermunt, J.K.: Mixture models for multilevel data sets. In: Hox, J., Roberts, J.K. (eds.) Handbook of Advanced Multilevel Analysis, pp. 59–81. Routledge (2010)
Wand, M.P., Jones, M.C.: Kernel smoothing. Chapman & Hall, London (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Grilli, L., Panzera, A., Rampichini, C. (2018). Clustering Upper Level Units in Multilevel Models for Ordinal Data. In: Mola, F., Conversano, C., Vichi, M. (eds) Classification, (Big) Data Analysis and Statistical Learning. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-55708-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-55708-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55707-6
Online ISBN: 978-3-319-55708-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)