Skip to main content

Clustering Upper Level Units in Multilevel Models for Ordinal Data

  • Conference paper
  • First Online:
Classification, (Big) Data Analysis and Statistical Learning

Abstract

We consider an explorative method for unsupervised clustering of upper level units in a two-level hierarchical setting. The idea lies in applying a density-based clustering algorithm to the predicted random effects obtained from a multilevel cumulative logit model. We illustrate the proposed approach throughout the analysis of data from European Social Survey about political trust in European countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.europeansocialsurvey.org/.

  2. 2.

    Details on HDI are at http://essedunet.nsd.uib.no/cms/topics/multilevel/ch6/all.html.

References

  1. Aitkin, M.: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55, 117–128 (1999)

    Article  MathSciNet  Google Scholar 

  2. Azzimonti, L., Ieva, F., Paganoni, A.M.: Nonlinear nonparametric mixed-effects models for unsupervised classification. Comput. Stat. 28, 1549–1570 (2013)

    Article  MathSciNet  Google Scholar 

  3. Asparouhov, T., Muthén, B.: Multilevel mixture models. In: Hancock, G.R. and Samuelsen, K.M. (Eds.) Advances in latent variable mixture models, pp. 27–51, Charlotte, NC: Infurmation Age Publishing (2008)

    Google Scholar 

  4. Azzalini, A., Menardi, G.: Clustering via nonparametric density estimation: the R Package pdfCluster. J. Stat. Software 57, 1–26 (2014)

    Article  Google Scholar 

  5. Azzalini, A., Torelli, N.: Clustering via nonparametric density estimation. Statist. Computing 17, 71–80 (2007)

    Article  MathSciNet  Google Scholar 

  6. Grilli, L., Rampichini, C.: Multilevel models for ordinal data. In: Kenett, R. and Salini, S. (eds.) Modern Analysis of Customer Surveys: with Applications using R., Chapter 19, Wiley (2012)

    Google Scholar 

  7. Heinzl, F., Tutz, G.: Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm. Stat. Modell. 13, 41–67 (2013)

    Article  MathSciNet  Google Scholar 

  8. Lukociene, O., Varriale, R., Vermunt, J.K.: The simultaneous decision(s) about the number of lower- and higher-level classes in multilevel latent class analysis. Sociological Meth. 40, 247–283 (2010)

    Article  Google Scholar 

  9. Menardi, G., Azzalini, A.: An advancement in clustering via nonparametric density estimation. Statist. Computing 124, 753–767 (2014)

    Article  MathSciNet  Google Scholar 

  10. McCulloch, C.E., Neuhaus, J.M.: Prediction of random effects in linear and generalized linear models under model misspecification. Biometrics 67, 270–279 (2011)

    Article  MathSciNet  Google Scholar 

  11. McCulloch, M.E., Neuhaus, J.M.: Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Stat. Sci. 26, 388–402 (2011)

    Article  MathSciNet  Google Scholar 

  12. Nylund, K.L., Asparouhov, T., Muthén, B.O.: Deciding the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct. Equat. Model. 14, 535–569 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ohlssen, D.I., Sharples, L.D., Spiegelhalter, D.J.: Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Statist. Med. 26, 2088–2112 (2007)

    Article  MathSciNet  Google Scholar 

  14. Skrondal, A., Rabe-Hesketh, S.: Prediction in multilevel generalized linear models. J. R. Stat. Soc. Ser. A 172, 659–687 (2009)

    Article  MathSciNet  Google Scholar 

  15. Vermunt, J.K.: Mixture models for multilevel data sets. In: Hox, J., Roberts, J.K. (eds.) Handbook of Advanced Multilevel Analysis, pp. 59–81. Routledge (2010)

    Google Scholar 

  16. Wand, M.P., Jones, M.C.: Kernel smoothing. Chapman & Hall, London (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Grilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grilli, L., Panzera, A., Rampichini, C. (2018). Clustering Upper Level Units in Multilevel Models for Ordinal Data. In: Mola, F., Conversano, C., Vichi, M. (eds) Classification, (Big) Data Analysis and Statistical Learning. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-55708-3_15

Download citation

Publish with us

Policies and ethics