A Unified Approach for Learning Expertise and Authority in Digital Libraries

  • B. de La RobertieEmail author
  • L. Ermakova
  • Y. Pitarch
  • A. Takasu
  • O. Teste
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10178)


Managing individual expertise is a major concern within any industrial-wide organization. If previous works have extensively studied the related expertise and authority profiling issues, they assume a semantic independence of these two key concepts. In digital libraries, state-of-the-art models generally summarize the researchers’ profile by using solely textual information. Consequently, authors with a large amount of publications are mechanically fostered to the detriment of less prolific ones with probably higher expertise. To overcome this drawback we propose to merge the two representations of expertise and authority and balance the results by capturing a mutual reinforcement principle between these two notions. Based on a graph representation of the library, the expert profiling task is formulated as an optimization problem where latent expertise and authority representations are learned simultaneously, unbiasing the expertise scores of individuals with a large amount of publications. The proposal is instanciated on a public scientific bibliographic dataset where researchers’ publications are considered as a source of evidence of individuals’ expertise and citation relations as a source of authoritative signals. Results from our experiments conducted over the Microsoft Academic Search database demonstrate significant efficiency improvement in comparison with state-of-the-art models for the expert retrieval task.


Expert finding Link analysis Optimization Digital libraries 


  1. 1.
    Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise Corpora. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2006, pp. 43–50. ACM, New York (2006)Google Scholar
  2. 2.
    Balog, K., de Rijke, M.: Determining expert profiles (with an application to expert finding). In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 2657–2662. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)CrossRefGoogle Scholar
  5. 5.
    Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using email communications. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM 2003, pp. 528–531. ACM, New York (2003)Google Scholar
  6. 6.
    Craswell, N., Hawking, D., Vercoustre, A.-M., Wilkins, P.: P@noptic expert: searching for experts not just for documents. In: Ausweb, pp. 21–25 (2001)Google Scholar
  7. 7.
    Davenport, T.H., Prusak, L., Prusak, L.: Working Knowledge: How Organizations Manage What They Know. Harvard Business School Press, Boston (1997)Google Scholar
  8. 8.
    de La Robertie, B., Pitarch, Y., Teste, O.: Measuring article quality in Wikipedia using the collaboration network. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM 2015, pp. 464–471. ACM, New York (2015)Google Scholar
  9. 9.
    Deng, H., King, I., Lyu, M.R.: Formal models for expert finding on DBLP bibliography data. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 163–172. IEEE Computer Society, Washington, D.C. (2008)Google Scholar
  10. 10.
    Gollapalli, S.D., Mitra, P., Giles, C.L.: Ranking experts using author-document-topic graphs. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries. JCDL 2013, pp. 87–96. ACM, New York (2013)Google Scholar
  11. 11.
    Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th International Conference on World Wide Web, WWW 2002, pp. 517–526. ACM, New York (2002)Google Scholar
  12. 12.
    Huynh, T., Takasu, A., Masada, T., Hoang, K.: Collaborator recommendation for isolated researchers. In: Proceedings of the 2014 28th International Conference on Advanced Information Networking and Applications Workshops, WAINA 2014, pp. 639–644. IEEE Computer Society, Washington, D.C. (2014)Google Scholar
  13. 13.
    Jurczyk, P., Agichtein, E.: Discovering authorities in question answer communities by using link analysis. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, CIKM 2007, pp. 919–922. ACM, New York (2007)Google Scholar
  14. 14.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 1, 556–562 (2001)Google Scholar
  16. 16.
    Li, C.-L., Su, Y.-C., Lin, T.-W., Tsai, C.-H., Chang, W.-C., Huang, K.-H., Kuo, T.-M., Lin, S.-W., Lin, Y.-S., Lu, Y.-C., Yang, C.-P., Chang, C.-X., Chin, W.-S., Juan, Y.-C., Tung, H.-Y., Wang, J.-P., Wei, C.-K., Wu, F., Yin, T.-C., Yu, T., Zhuang, Y., Lin, S.-D., Lin, H.-T., Lin, C.-J.: Combination of feature engineering and ranking models for paper-author identification in KDD cup 2013. In: Proceedings of the 2013 KDD Cup 2013 Workshop, KDD Cup 2013, pp. 2:1–2:7. ACM, New York (2013)Google Scholar
  17. 17.
    Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. In: Proceedings of the 7th International World Wide Web Conference, pp. 161–172 (1998)Google Scholar
  19. 19.
    Rybak, J., Balog, K., Nørvåg, K.: Temporal expertise profiling. In: Proceedings of the 36th European Conference on Advances in Information Retrieval, ECIR 2014, pp. 540–546 (2014)Google Scholar
  20. 20.
    Serdyukov, P., Taylor, M., Vinay, V., Richardson, M., White, R.W.: Automatic people tagging for expertise profiling in the enterprise. In: Proceedings of the 33rd European Conference on Advances in Information Retrieval, ECIR 2011 (2011)Google Scholar
  21. 21.
    Tang, J., Yao, L., Zhang, D., Zhang, J.: A combination approach to web user profiling. ACM Trans. Knowl. Discov. Data 5(1), 2:1–2:44 (2010)CrossRefGoogle Scholar
  22. 22.
    Tang, J., Zhang, J., Jin, R., Yang, Z., Cai, K., Zhang, L., Su, Z.: Topic level expertise search over heterogeneous networks. Mach. Learn. 82(2), 211–237 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    White, S., Smyth, P.: Algorithms for estimating relative importance in networks. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 266–275. ACM, New York (2003)Google Scholar
  24. 24.
    Yang, Z., Tang, J., Wang, B., Guo, J., Li, J., Chen, S.: Expert2bole: from expert finding to bole search. In: Knowledge Discovery and Data Mining (2009)Google Scholar
  25. 25.
    Yimam-Seid, D., Kobsa, A.: Expert-finding systems for organizations: problem and domain analysis and the DEMOIR approach. J. Org. Comput. Electron. Commer. 13(1), 1–24 (2003)Google Scholar
  26. 26.
    Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 221–230. ACM, New York (2007)Google Scholar
  27. 27.
    Zhou, D., Zhu, S., Yu, K., Song, X., Tseng, B.L., Zha, H., Giles, C.L.: Learning multiple graphs for document recommendations. In: Proceedings of the 17th International Conference on World Wide Web, WWW 2008, pp. 141–150. ACM, New York (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • B. de La Robertie
    • 1
    Email author
  • L. Ermakova
    • 2
    • 3
  • Y. Pitarch
    • 1
  • A. Takasu
    • 4
  • O. Teste
    • 1
  1. 1.Université de ToulouseToulouseFrance
  2. 2.Université de LorraineNancyFrance
  3. 3.LISIS, Université de Paris-Est Marne-la-ValléeChamps-sur-MarneFrance
  4. 4.National Institute of InformaticsChiyoda, TokyoJapan

Personalised recommendations