A Comparative Analysis of Dynamic Locality and Redundancy in Grammatical Evolution

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10196)

Abstract

The most salient feature of Grammatical Evolution (GE) is a procedure which maps genotypes to phenotypes using the grammar production rules; however, the search effectiveness of GE may be affected by low locality and high redundancy, which can prevent GE to comply with the basic principle that offspring should inherit some traits from their parents. Indeed, many studies previously investigated the locality and redundancy of GE as originally proposed in [31]. In this paper, we extend those results by considering redundancy and locality during the evolution, rather than statically, hence trying to understand if and how they are influenced by the selective pressure determined by the fitness. Moreover, we consider not only the original GE formulation, but three other variants proposed later (BGE, \(\pi \)GE, and SGE). We experimentally find that there is an interaction between locality/redundancy and other evolution-related measures, namely diversity and growth of individual size. In particular, the combined action of the crossover operator and the genotype-phenotype mapper makes SGE less redundant at the beginning of the evolution, but with very high redundancy after some generations, due to the low phenotype diversity.

Keywords

Genetic programming Diversity Genotype-phenotype mapping Genetic operators 

References

  1. 1.
    Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Syntactical similarity learning by means of grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 260–269. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45823-6_24 CrossRefGoogle Scholar
  2. 2.
    Castle, T., Johnson, C.G.: Positional effect of crossover and mutation in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 26–37. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12148-7_3 CrossRefGoogle Scholar
  3. 3.
    Doran, J.E., Michie, D.: Experiments with the graph Traverser program. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 294, pp. 235–259. The Royal Society (1966)Google Scholar
  4. 4.
    Fagan, D., O’Neill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An analysis of genotype-phenotype maps in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 62–73. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12148-7_6 CrossRefGoogle Scholar
  5. 5.
    Harper, R., Blair, A.: A structure preserving crossover in grammatical evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2537–2544. IEEE (2005)Google Scholar
  6. 6.
    Hugosson, J., Hemberg, E., Brabazon, A., ONeill, M.: An investigation of the mutation operator using different representations in grammatical evolution. In: Proceedings of 2nd International Symposium Advances in Artificial Intelligence and Applications, vol. 2, pp. 409–419 (2007)Google Scholar
  7. 7.
    Hugosson, J., Hemberg, E., Brabazon, A., ONeill, M.: Genotype representations in grammatical evolution. Appl. Soft Comput. 10(1), 36–43 (2010)CrossRefGoogle Scholar
  8. 8.
    Keijzer, M., O’Neill, M., Ryan, C., Cattolico, M.: Grammatical evolution rules: the mod and the bucket rule. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 123–130. Springer, Heidelberg (2002). doi:10.1007/3-540-45984-7_12 CrossRefGoogle Scholar
  9. 9.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)MATHGoogle Scholar
  10. 10.
    Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. J. Exp. Theoret. Artif. Intell. 2(2), 101–115 (1990)CrossRefGoogle Scholar
  11. 11.
    Lourenço, N., Pereira, F.B., Costa, E.: SGE: a structured representation for grammatical evolution. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 136–148. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31471-6_11 Google Scholar
  12. 12.
    Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evol. Mach. 17, 251–289 (2016)CrossRefGoogle Scholar
  13. 13.
    McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual conference on Genetic and Evolutionary Computation, pp. 791–798. ACM (2012)Google Scholar
  14. 14.
    Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evol. Mach. 11(3–4), 365–396 (2010)CrossRefGoogle Scholar
  15. 15.
    Moraglio, A., Poli, R.: Topological interpretation of crossover. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24854-5_131 CrossRefGoogle Scholar
  16. 16.
    O’Neill, M., Brabazon, A.: Grammatical differential evolution. In: IC-AI, pp. 231–236 (2006)Google Scholar
  17. 17.
    O’Neill, M., McDermott, J., Swafford, J.M., Byrne, J., Hemberg, E., Brabazon, A., Shotton, E., McNally, C., Hemberg, M.: Evolutionary design using grammatical evolution and shape grammars: designing a shelter. Int. J. Des. Eng. 3(1), 4–24 (2010)Google Scholar
  18. 18.
    O’Neill, M., Ryan, C.: Automatic generation of programs with grammatical evolution. In: Proceedings of AICS, pp. 72–78 (1999)Google Scholar
  19. 19.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)CrossRefGoogle Scholar
  20. 20.
    O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolution. Genet. Program. Evol. Mach. 4(1), 67–93 (2003)CrossRefMATHGoogle Scholar
  21. 21.
    O’Neill, M., Brabazon, A.: Grammatical swarm the generation of programs by social programming. Nat. Comput. 5(4), 443–462 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: \(\pi \)grammatical evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24855-2_70 CrossRefGoogle Scholar
  23. 23.
    O’Neill, M., Brabazon, A., Ryan, C., Collins, J.J.: Evolving market index trading rules using grammatical evolution. In: Boers, E.J.W. (ed.) EvoWorkshops 2001. LNCS, vol. 2037, pp. 343–352. Springer, Heidelberg (2001). doi:10.1007/3-540-45365-2_36 CrossRefGoogle Scholar
  24. 24.
    O’Sullivan, J., Ryan, C.: An investigation into the use of different search strategies with grammatical evolution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 268–277. Springer, Heidelberg (2002). doi:10.1007/3-540-45984-7_26 CrossRefGoogle Scholar
  25. 25.
    Pawlik, M., Augsten, N.: Efficient computation of the tree edit distance. ACM Trans. Database Syst. (TODS) 40(1), 3 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Raidl, G.R., Gottlieb, J.: Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: a case study for the multidimensional knapsack problem. Evol. Comput. 13(4), 441–475 (2005)CrossRefGoogle Scholar
  27. 27.
    Rothlauf, F.: Design of Modern Heuristics: Principles and Application. Springer Science Business Media, Berlin (2011)CrossRefMATHGoogle Scholar
  28. 28.
    Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evol. Comput. 11(4), 381–415 (2003)CrossRefGoogle Scholar
  29. 29.
    Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). doi:10.1007/11729976_29 CrossRefGoogle Scholar
  30. 30.
    Ryan, C., Azad, A., Sheahan, A., O’Neill, M.: No coercion and no prohibition, a position independent encoding scheme for evolutionary algorithms – the chorus system. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 131–141. Springer, Heidelberg (2002). doi:10.1007/3-540-45984-7_13 CrossRefGoogle Scholar
  31. 31.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930 CrossRefGoogle Scholar
  32. 32.
    Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 292–302. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45823-6_27 CrossRefGoogle Scholar
  33. 33.
    Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in grammatical evolution. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 465–475. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10762-2_46 Google Scholar
  34. 34.
    Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the best of both worlds of grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1111–1118. ACM (2015)Google Scholar
  35. 35.
    White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evol. Mach. 14(1), 3–29 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly

Personalised recommendations