Advertisement

A New Subgraph Crossover for Cartesian Genetic Programming

  • Roman Kalkreuth
  • Günter Rudolph
  • Andre Droschinsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10196)

Abstract

While tree-based Genetic Programming is often used with crossover, Cartesian Genetic Programming is mostly used only with mutation as genetic operator. In this paper, a new crossover technique is introduced which recombines subgraphs of two selected graphs. Experiments on symbolic regression, boolean functions and image operator design problems indicate that the use of the subgraph crossover improves the search performance of Cartesian Genetic Programming. A preliminary comparison to a former proposed crossover technique indicates that the subgraph crossover performs better on our tested problems.

Keywords

Cartesian Genetic Programming Crossover Recombination 

References

  1. 1.
    Cai, X., Smith, S.L., Tyrrell, A.M.: Positional independence and recombination in cartesian genetic programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 351–360. Springer, Heidelberg (2006). doi: 10.1007/11729976_32 CrossRefGoogle Scholar
  2. 2.
    Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, vol. 2, pp. 1580–1587. ACM Press, London, 7–11 July 2007Google Scholar
  3. 3.
    Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propagation of modules in cartesian genetic programming. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 1219–1226. ACM, Atlanta, GA, USA, 12–16 July 2008Google Scholar
  4. 4.
    Koza, J.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Technical report STAN-CS-90-1314, Department of Computer Science, Stanford University, June 1990Google Scholar
  5. 5.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  6. 6.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. In: Proceedings of the Second Annual Conference on Genetic Programming 1997, pp. 240–248. Morgan Kaufmann, Stanford University, CA, USA, 13–16 July 1997Google Scholar
  8. 8.
    Luke, S., Spector, L.: A revised comparison of crossover and mutation in genetic programming. In: Proceedings of the Third Annual Conference on Genetic Programming 1998, pp. 208–213. Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, 22–25 July 1998Google Scholar
  9. 9.
    McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic programming needs better benchmarks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 791–798. ACM, Philadelphia, Pennsylvania, USA, 7–11 July 2012Google Scholar
  10. 10.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). doi: 10.1007/978-3-540-46239-2_9 CrossRefGoogle Scholar
  11. 11.
    Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142. Morgan Kaufmann, Orlando, Florida, USA, 13–17 July 1999Google Scholar
  12. 12.
    Sekanina, L.: Image filter design with evolvable hardware. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoWorkshops 2002. LNCS, vol. 2279, pp. 255–266. Springer, Heidelberg (2002). doi: 10.1007/3-540-46004-7_26 CrossRefGoogle Scholar
  13. 13.
    Slaný, K., Sekanina, L.: Fitness landscape analysis and image filter evolution using functional-level CGP. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 311–320. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71605-1_29 CrossRefGoogle Scholar
  14. 14.
    Walker, J.A., Miller, J.F.: Evolution and acquisition of modules in cartesian genetic programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187–197. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24650-3_17 CrossRefGoogle Scholar
  15. 15.
    Walker, J.A., Miller, J.F., Cavill, R.: A multi-chromosome approach to standard and embedded cartesian genetic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, vol. 1, pp. 903–910. ACM Press, Seattle, 8–12 July 2006Google Scholar
  16. 16.
    White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaskowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)CrossRefGoogle Scholar
  17. 17.
    White, D.R., Poulding, S.: A rigorous evaluation of crossover and mutation in genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 220–231. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01181-8_19 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roman Kalkreuth
    • 1
  • Günter Rudolph
    • 1
  • Andre Droschinsky
    • 1
  1. 1.Department of Computer ScienceTU Dortmund UniversityDortmundGermany

Personalised recommendations