Skip to main content

Strategies for Improving the Distribution of Random Function Outputs in GSGP

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10196))

Included in the following conference series:

  • 1232 Accesses

Abstract

In the last years, different approaches have been proposed to introduce semantic information to genetic programming. In particular, the geometric semantic genetic programming (GSGP) and the interesting properties of its evolutionary operators have gotten the attention of the community. This paper is interested in the use of GSGP to solve symbolic regression problems, where semantics is defined by the output set generated by a given individual when applied to the training cases. In this scenario, both mutation and crossover operators defined with fitness function based on Manhattan distance use randomly built functions to generate offspring. However, the outputs of these random functions are not guaranteed to be uniformly distributed in the semantic space, as the functions are generated considering the syntactic space. We hypothesize that the non-uniformity of the semantics of these functions may bias the search, and propose three different standard normalization techniques to improve the distribution of the outputs of these random functions over the semantic space. The results are compared with a popular strategy that uses a logistic function as a wrapper to the outputs, and show that the strategies tested can improve the results of the previous method. The experimental analysis also indicates that a more uniform distribution of the semantics of these functions does not necessarily imply in better results in terms of test error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The hyperrectangle in a semantic space under the Euclidean metric is the equivalent to a segment in a semantic space under the Manhattan distance.

  2. 2.

    The use of AQ instead of division—or protected division—makes the approach proposed by Dick [7] redundant. For this reason, we do not present the method in our experimental analysis.

  3. 3.

    Five training partitions of the 5-fold cross-validation, 5 samples generated for Keijzer-5 and Vladislavleva-1 and a single set generated for Keijzer-6 and Keijzer-7.

References

  1. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014)

    Article  Google Scholar 

  2. Oliveira, L.: Improving search in geometric semantic genetic programming. Ph.D. thesis, Universidade Federal de Minas Gerais, September 2016

    Google Scholar 

  3. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  4. Pawlak, T., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing search operators in genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2014)

    Article  Google Scholar 

  5. Pawlak, T.P.: Competent algorithms for geometric semantic genetic programming. Ph.D. thesis, Poznan University of Technology, Pozna’n, Poland (2015)

    Google Scholar 

  6. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic programming. Genet. Program. Evolvable Mach. 16(1), 73–81 (2015)

    Article  Google Scholar 

  7. Dick, G.: Improving geometric semantic genetic programming with safe tree initialisation. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 28–40. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16501-1_3

    Google Scholar 

  8. Jackson, D.: Phenotypic diversity in initial genetic programming populations. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12148-7_9

    Chapter  Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  10. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic gp and its application to problems in pharmacokinetics. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37207-0_18

    Chapter  Google Scholar 

  11. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.: Geometric semantic genetic programming with local search. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference, GECCO 2015, pp. 999–1006. ACM, New York (2015)

    Google Scholar 

  12. Oliveira, L.O.V.B., Miranda, L.F., Pappa, G.L., Otero, F.E.B., Takahashi, R.H.C.: Reducing dimensionality to improve search in semantic genetic programming. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 375–385. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45823-6_35

    Chapter  Google Scholar 

  13. Oliveira, L., Otero, F.E.B., Pappa, G.L.: A dispersion operator for geometric semantic genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 773–780. ACM (2016)

    Google Scholar 

  14. Gonçalves, I., Silva, S., Fonseca, C.M.: On the generalization ability of geometric semantic genetic programming. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 41–52. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16501-1_4

    Google Scholar 

  15. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Elsevier Science, Amsterdam (2011)

    MATH  Google Scholar 

  16. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2013)

    Article  Google Scholar 

  17. Bache, K., Lichman, M.: UCI machine learning repository (2014). http://archive.ics.uci.edu/ml

  18. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013)

    Article  Google Scholar 

  19. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 791–798. ACM (2012)

    Google Scholar 

  20. Iman, R.L., Davenport, J.M.: Approximations of the critical region of the Friedman statistic. Commun. Stat. - Theory Methods 9(6), 571–595 (1980)

    Article  MATH  Google Scholar 

  21. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was partially supported by the following Brazilian Research Support Agencies: CNPq, FAPEMIG, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Otavio V. B. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Oliveira, L.O.V.B., Casadei, F., Pappa, G.L. (2017). Strategies for Improving the Distribution of Random Function Outputs in GSGP. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55696-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55695-6

  • Online ISBN: 978-3-319-55696-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics