Advertisement

Use of Stem Cells in Acute and Complex Wounds

Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

Wound healing is a well-orchestrated, if operative, process that involves the specific coordination of various cellular and molecular events. There are many therapeutic approaches to facilitate wound healing; however the treatment of cutaneous wounds remains a challenge, particularly in complex wounds. This chapter will discuss the therapeutic potential of stem cells, undifferentiated and multipotent cells, in the treatment of acute and complex cutaneous wounds. We will address current treatments in deficient healing (e.g., diabetes and aging) and excessive healing (e.g., hypertrophic scars and keloids) and emerging treatments that utilize adult stem cells. Finally, we will discuss the methods of delivering these stem cells as well as the challenges stem cell therapies face in regenerative medicine.

Keywords

Stem cells Wound healing Chronic wounds Skin regeneration Regenerative medicine 

References

  1. Abd-Allah SH, El-Shal AS, Shalaby SM, Abd-Elbary E, Mazen NF, Abdel Kader RR (2015) The role of placenta-derived mesenchymal stem cells in healing of induced full-thickness skin wound in a mouse model. IUBMB Life 67(9):701–709. doi: 10.1002/iub.1427. Epub 2015/09/01; PubMed PMID: 26315141,https://www.ncbi.nlm.nih.gov/pubmed/26315141
  2. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi: 10.1182/blood-2004-04-1559. Epub 2004/10/21; PubMed PMID: 15494428PubMedCrossRefGoogle Scholar
  3. Agren MS, Eaglstein WH, Ferguson MW, Harding KG, Moore K, Saarialho-Kere UK et al (2000) Causes and effects of the chronic inflammation in venous leg ulcers. Acta Derm Venereol Suppl 210:3–17. Epub 2000/07/08. PubMed PMID: 10884942Google Scholar
  4. Akita S, Akino K, Hirano A, Ohtsuru A, Yamashita S (2010) Mesenchymal stem cell therapy for cutaneous radiation syndrome. Health Phys 98(6):858–862. doi: 10.1097/HP.0b013e3181d3d52c. Epub 2010/05/07; PubMed PMID: 20445394PubMedCrossRefGoogle Scholar
  5. Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA (2011) Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a beta-catenin mediated process. Stem Cells (Dayton, Ohio) 29(9):1371–1379. doi: 10.1002/stem.688. Epub 2011/07/09; PubMed PMID: 21739529Google Scholar
  6. Amini-Nik S, Cambridge E, Yu W, Guo A, Whetstone H, Nadesan P et al (2014) Beta-catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 124(6):2599–2610. doi: 10.1172/jci62059. Epub 2014/05/20; PubMed PMID: 24837430; PubMed Central PMCID: PMCPmc4089463PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amoh Y, Katsuoka K, Hoffman RM (2010) The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine. J Dermatol Sci 60(3):131–137. doi: 10.1016/j.jdermsci.2010.09.007. Epub 2010/11/03; PubMed PMID: 21036545PubMedCrossRefGoogle Scholar
  8. Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E et al (2014) Effect of human Wharton’s jelly mesenchymal stem cell paracrine signaling on keloid fibroblasts. Stem Cells Transl Med 3(3):299–307. doi: 10.5966/sctm.2013-0120. Epub 2014/01/18; PubMed PMID: 24436441; PubMed Central PMCID: PMCPmc3952928PubMedPubMedCentralCrossRefGoogle Scholar
  9. Asai J, Takenaka H, Kusano KF, Ii M, Luedemann C, Curry C et al (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113(20):2413–2424. doi: 10.1161/circulationaha.105.603167. Epub 2006/05/17; PubMed PMID: 16702471PubMedCrossRefGoogle Scholar
  10. Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE et al (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1(5):260–266. doi: 10.1038/12971. Epub 1999/11/13; PubMed PMID: 10559937PubMedCrossRefGoogle Scholar
  11. Athar M, Tang X, Lee JL, Kopelovich L, Kim AL (2006) Hedgehog signalling in skin development and cancer. Exp Dermatol 15(9):667–677. doi: 10.1111/j.1600-0625.2006.00473.x. Epub 2006/08/03; PubMed PMID: 16881963PubMedCrossRefGoogle Scholar
  12. Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 139(4):510–516. doi: 10.1001/archderm.139.4.510. Epub 2003/04/23; PubMed PMID: 12707099PubMedCrossRefGoogle Scholar
  13. Bailey AM, Kapur S, Katz AJ (2010) Characterization of adipose-derived stem cells: an update. Curr Stem Cell Res Ther 5(2):95–102. Epub 2009/11/28. PubMed PMID: 19941461PubMedCrossRefGoogle Scholar
  14. Basiouny HS, Salama NM, Maadawi ZM, Farag EA (2013) Effect of bone marrow derived mesenchymal stem cells on healing of induced full-thickness skin wounds in albino rat. Int J Stem Cells 6(1):12–25. Epub 2013/12/04. PubMed PMID: 24298370; PubMed Central PMCID: PMCPmc3840998PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bielefeld KA, Amini-Nik S, Alman BA (2013) Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci: CMLS 70(12):2059–2081. doi: 10.1007/s00018-012-1152-9. Epub 2012/10/12; PubMed PMID: 23052205; PubMed Central PMCID: PMCPmc3663196PubMedCrossRefGoogle Scholar
  16. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors (Chur, Switzerland) 29(5):196–202. doi: 10.3109/08977194.2011.595714. Epub 2011/07/12; PubMed PMID: 21740331; PubMed Central PMCID: PMCPmc4408550CrossRefGoogle Scholar
  17. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648. doi: 10.1016/j.cell.2004.08.012. Epub 2004/09/02; PubMed PMID: 15339667PubMedCrossRefGoogle Scholar
  18. Blau HM, Cosgrove BD, Ho AT (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21(8):854–862. doi: 10.1038/nm.3918. Epub 2015/08/08; PubMed PMID: 26248268PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boxall SA, Jones E (2012) Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012:975871. doi: 10.1155/2012/975871. Epub 2012/06/06; PubMed PMID: 22666272; PubMed Central PMCID: PMCPmc3361338PubMedPubMedCentralCrossRefGoogle Scholar
  20. Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO et al (2007) Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med 35(11):2615–2623. doi: 10.1097/01.ccm.0000285991.36698.e2. Epub 2007/09/11; PubMed PMID: 17828040PubMedCrossRefGoogle Scholar
  21. Branski LK, Gauglitz GG, Herndon DN, Jeschke MG (2009) A review of gene and stem cell therapy in cutaneous wound healing. Burn J Int Soc Burn Inj 35(2):171–180. doi: 10.1016/j.burns.2008.03.009. Epub 2008/07/08; PubMed PMID: 18603379; PubMed Central PMCID: PMCPmc3899575CrossRefGoogle Scholar
  22. Brem H, Stojadinovic O, Diegelmann RF, Entero H, Lee B, Pastar I et al (2007) Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med (Cambridge, Mass) 13(1–2):30–39. doi: 10.2119/2006-00054.Brem. Epub 2007/05/23; PubMed PMID: 17515955; PubMed Central PMCID: PMCPmc1869625Google Scholar
  23. Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL et al (2014) Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 16(2):245–257. doi: 10.1016/j.jcyt.2013.11.011. Epub 2014/01/21; PubMed PMID: 24438903PubMedCrossRefGoogle Scholar
  24. Caiado F, Real C, Carvalho T, Dias S (2008) Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential. PLoS ONE 3(11):e3752. doi: 10.1371/journal.pone.0003752. Epub 2008/11/19; PubMed PMID: 19015735; PubMed Central PMCID: PMCPmc2582964PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132(5):885–896. doi: 10.1242/dev.01670. Epub 2005/01/28; PubMed PMID: 15673569PubMedCrossRefGoogle Scholar
  26. Celiz AD, Smith JG, Langer R, Anderson DG, Winkler DA, Barrett DA et al (2014) Materials for stem cell factories of the future. Nat Mater 13(6):570–579. doi: 10.1038/nmat3972. Epub 2014/05/23; PubMed PMID: 24845996PubMedCrossRefGoogle Scholar
  27. Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25(1):73–78. doi: 10.1016/j.clindermatol.2006.10.002. Epub 2007/02/06; PubMed PMID: 17276204PubMedCrossRefGoogle Scholar
  28. Chang EI, Loh SA, Ceradini DJ, Chang EI, Lin SE, Bastidas N et al (2007) Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation 116(24):2818–2829. doi: 10.1161/circulationaha.107.715847. Epub 2007/11/28; PubMed PMID: 18040029PubMedCrossRefGoogle Scholar
  29. Chanprapaph K, Tanrattanakorn S, Wattanakrai P, Wongkitisophon P, Vachiramon V (2012) Effectiveness of onion extract gel on surgical scars in Asians. Dermatol Res Pract 2012:212945. doi: 10.1155/2012/212945. Epub 2012/08/28; PubMed PMID: 22924037; PubMed Central PMCID: PMCPmc3423794PubMedPubMedCentralGoogle Scholar
  30. Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H et al (2002) Beta-catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A 99(10):6973–6978. doi: 10.1073/pnas.102657399. Epub 2002/05/02; PubMed PMID: 11983872; PubMed Central PMCID: PMCPmc124513PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cheon SS, Nadesan P, Poon R, Alman BA (2004) Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 293(2):267–274. Epub 2004/01/20. PubMed PMID: 14729464PubMedCrossRefGoogle Scholar
  32. Cheon S, Poon R, Yu C, Khoury M, Shenker R, Fish J et al (2005) Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds. Lab Inv J Tech Methods Pathol 85(3):416–425. doi: 10.1038/labinvest.3700237. Epub 2005/01/18; PubMed PMID: 15654359CrossRefGoogle Scholar
  33. Cheon SS, Wei Q, Gurung A, Youn A, Bright T, Poon R et al (2006) Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J: Off Publ Fed Am Soc Exp Biol 20(6):692–701. doi: 10.1096/fj.05-4759com. Epub 2006/04/04; PubMed PMID: 16581977CrossRefGoogle Scholar
  34. Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK et al (1999) Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205(1):1–9. doi: 10.1006/dbio.1998.9103. Epub 1999/01/12; PubMed PMID: 9882493PubMedCrossRefGoogle Scholar
  35. Chigurupati S, Arumugam TV, Son TG, Lathia JD, Jameel S, Mughal MR et al (2007) Involvement of notch signaling in wound healing. PLoS ONE 2(11):e1167. doi: 10.1371/journal.pone.0001167. Epub 2007/11/15; PubMed PMID: 18000539; PubMed Central PMCID: PMCPmc2048753PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cho JW, Cho SY, Lee SR, Lee KS (2010) Onion extract and quercetin induce matrix metalloproteinase-1 in vitro and in vivo. Int J Mol Med 25(3):347–352. Epub 2010/02/04. PubMed PMID: 20127038PubMedCrossRefGoogle Scholar
  37. Choudhery MS, Khan M, Mahmood R, Mehmood A, Khan SN, Riazuddin S (2012) Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti-apoptosis capabilities. Cell Biol Int 36(8):747–753. doi: 10.1042/cbi20110183. Epub 2012/02/23; PubMed PMID: 22352320PubMedCrossRefGoogle Scholar
  38. Clark RA (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol 94(6 Suppl):128s–134s. Epub 1990/06/01. PubMed PMID: 2161886PubMedCrossRefGoogle Scholar
  39. Crowe MJ, Doetschman T, Greenhalgh DG (2000) Delayed wound healing in immunodeficient TGF-beta 1 knockout mice. J Invest Dermatol 115(1):3–11. doi: 10.1046/j.1523-1747.2000.00010.x. Epub 2000/07/08; PubMed PMID: 10886500PubMedCrossRefGoogle Scholar
  40. Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Inv J Tech Methods Pathol 63(1):21–29. Epub 1990/07/01; PubMed PMID: 2197503Google Scholar
  41. Das AK, Bin Abdullah BJ, Dhillon SS, Vijanari A, Anoop CH, Gupta PK (2013) Intra-arterial allogeneic mesenchymal stem cells for critical limb ischemia are safe and efficacious: report of a phase I study. World J Surg 37(4):915–922. doi: 10.1007/s00268-012-1892-6. Epub 2013/01/12; PubMed PMID: 23307180PubMedCrossRefGoogle Scholar
  42. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 12(5):359–366. doi: 10.1089/rej.2009.0872. Epub 2009/11/26; PubMed PMID: 19929258PubMedCrossRefGoogle Scholar
  43. Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG et al (2007) Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif 40(3):367–380. doi: 10.1111/j.1365-2184.2007.00439.x. Epub 2007/05/29; PubMed PMID: 17531081PubMedCrossRefGoogle Scholar
  44. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111. Epub 1993/07/01. PubMed PMID: 8314838; PubMed Central PMCID: PMCPmc2119614PubMedCrossRefGoogle Scholar
  45. Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl 48:651–662. doi: 10.1016/j.msec.2014.12.068. Epub 2015/01/13; PubMed PMID: 25579968; PubMed Central PMCID: PMCPmc4443476PubMedCrossRefGoogle Scholar
  46. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M et al (2015) Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. doi: 10.1159/000381877. Epub 2015/06/06; PubMed PMID: 26045256PubMedGoogle Scholar
  47. Falanga V (2000) Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 8(5):347–352. Epub 2000/12/15. PubMed PMID: 11115147CrossRefGoogle Scholar
  48. Falanga V (2012) Stem cells in tissue repair and regeneration. J Invest Dermatol 132(6):1538–1541. doi: 10.1038/jid.2012.77. Epub 2012/05/16; PubMed PMID: 22584501; PubMed Central PMCID: PMCPmc4084617PubMedPubMedCentralCrossRefGoogle Scholar
  49. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312. doi: 10.1089/ten.2006.0278. Epub 2007/05/24; PubMed PMID: 17518741PubMedCrossRefGoogle Scholar
  50. Fang T, Lineaweaver WC, Sailes FC, Kisner C, Zhang F (2014) Clinical application of cultured epithelial autografts on acellular dermal matrices in the treatment of extended burn injuries. Ann Plast Surg 73(5):509–515. doi: 10.1097/SAP.0b013e3182840883. Epub 2013/12/11; PubMed PMID: 24322642PubMedCrossRefGoogle Scholar
  51. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A et al (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells (Dayton, Ohio) 22(5):812–822. doi: 10.1634/stemcells.22-5-812. Epub 2004/09/03; PubMed PMID: 15342945; PubMed Central PMCID: PMCPmc1388268CrossRefGoogle Scholar
  52. Ferguson MW, O’Kane S (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond Ser B Biol Sci 359(1445):839–850. doi: 10.1098/rstb.2004.1475. Epub 2004/08/06; PubMed PMID: 15293811; PubMed Central PMCID: PMCPmc1693363CrossRefGoogle Scholar
  53. Ferguson MW, Duncan J, Bond J, Bush J, Durani P, So K et al (2009) Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet (London, England) 373(9671):1264–1274. doi: 10.1016/s0140-6736(09)60322-6. Epub 2009/04/14; PubMed PMID: 19362676CrossRefGoogle Scholar
  54. Fiorina P, Pietramaggiori G, Scherer SS, Jurewicz M, Mathews JC, Vergani A et al (2010) The mobilization and effect of endogenous bone marrow progenitor cells in diabetic wound healing. Cell Transplant 19(11):1369–1381. doi: 10.3727/096368910x514288. Epub 2010/10/28; PubMed PMID: 20977829PubMedCrossRefGoogle Scholar
  55. Fuchs E, Nowak JA (2008) Building epithelial tissues from skin stem cells. Cold Spring Harb Symp Quant Biol 73:333–350. doi: 10.1101/sqb.2008.73.032. Epub 2008/11/22; PubMed PMID: 19022769; PubMed Central PMCID: PMCPmc2693088PubMedPubMedCentralCrossRefGoogle Scholar
  56. Garcia S, Bernad A, Martin MC, Cigudosa JC, Garcia-Castro J, de la Fuente R (2010) Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res 316(9):1648–1650. doi: 10.1016/j.yexcr.2010.02.016. Epub 2010/02/23; PubMed PMID: 20171963PubMedCrossRefGoogle Scholar
  57. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ et al (2014) Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med 3(9):1079–1089. doi: 10.5966/sctm.2014-0007. Epub 2014/07/20; PubMed PMID: 25038246; PubMed Central PMCID: PMCPmc4149299PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gimble JM, Bunnell BA, Guilak F (2012) Human adipose-derived cells: an update on the transition to clinical translation. Regen Med 7(2):225–235. doi: 10.2217/rme.11.119. Epub 2012/03/09; PubMed PMID: 22397611; PubMed Central PMCID: PMCPmc3321837PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219. doi: 10.1161/circresaha.108.176826. Epub 2008/11/26; PubMed PMID: 19028920; PubMed Central PMCID: PMCPmc2667788PubMedPubMedCentralCrossRefGoogle Scholar
  60. Guffanti A (2014) Negative pressure wound therapy in the treatment of diabetic foot ulcers: a systematic review of the literature. J Wound Ostomy Continence Nurs: Off Publ Wound Ostomy Continence Nurses Soc WOCN 41(3):233–237. doi: 10.1097/won.0000000000000021. Epub 2014/05/09; PubMed PMID: 24805174CrossRefGoogle Scholar
  61. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229. doi: 10.1177/0022034509359125. Epub 2010/02/09; PubMed PMID: 20139336; PubMed Central PMCID: PMCPmc2903966PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S et al (2013) A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med 11:143. doi: 10.1186/1479-5876-11-143. Epub 2013/06/14; PubMed PMID: 23758736; PubMed Central PMCID: PMCPmc3688296PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. doi: 10.1038/nature07039. Epub 2008/05/16; PubMed PMID: 18480812PubMedCrossRefGoogle Scholar
  64. Ha X, Yin Q, Dong F, Jia Q, Lv T (2010) Study on bone marrow mesenchymal stem cells transfected with adenovirus hepatocyte growth factor gene promoting wounds repair in diabetic rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi = Zhongguo Xiufu Chongjian Waike Zazhi = Chin J Reparative Reconstr Surg 24(12):1520–1524. Epub 2011/01/26. PubMed PMID: 21261106Google Scholar
  65. Heng MC (2011) Wound healing in adult skin: aiming for perfect regeneration. Int J Dermatol 50(9):1058–1066. doi: 10.1111/j.1365-4632.2011.04940.x. Epub 2011/12/01; PubMed PMID: 22126865PubMedCrossRefGoogle Scholar
  66. Hocevar BA, Brown TL, Howe PH (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18(5):1345–1356. doi: 10.1093/emboj/18.5.1345. Epub 1999/03/04; PubMed PMID: 10064600; PubMed Central PMCID: PMCPmc1171224PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hostetler SG, Xiang H, Gupta S, Sen C, Gordillo JM (2006) Discharge patterns of injury-related hospitalizations with an acute wound in the United States. Wounds 18(12):340–351Google Scholar
  68. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105(4):533–545. Epub 2001/05/24. PubMed PMID: 11371349PubMedCrossRefGoogle Scholar
  69. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549. doi: 10.1182/blood-2003-04-1291. Epub 2003/08/06; PubMed PMID: 12900350PubMedCrossRefGoogle Scholar
  70. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354. doi: 10.1038/nm1328. Epub 2005/11/17; PubMed PMID: 16288281PubMedCrossRefGoogle Scholar
  71. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE et al (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447(7142):316–320. doi: 10.1038/nature05766. Epub 2007/05/18; PubMed PMID: 17507982PubMedCrossRefGoogle Scholar
  72. Itoh M, Kiuru M, Cairo MS, Christiano AM (2011) Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A 108(21):8797–8802. doi: 10.1073/pnas.1100332108. Epub 2011/05/11; PubMed PMID: 21555586; PubMed Central PMCID: PMCPmc3102348PubMedPubMedCentralCrossRefGoogle Scholar
  73. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150. doi: 10.1016/j.biotechadv.2009.11.001. Epub 2009/11/17; PubMed PMID: 19913083PubMedCrossRefGoogle Scholar
  74. Jeon O, Alsberg E (2013) Regulation of stem cell fate in a three-dimensional micropatterned dual-crosslinked hydrogel system. Adv Funct Mater 23(38):4765–4775. doi: 10.1002/adfm.201300529. Epub 2014/03/01; PubMed PMID: 24578678; PubMed Central PMCID: PMCPmc3933204PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jeschke MG, Rose C, Angele P, Fuchtmeier B, Nerlich MN, Bolder U (2004) Development of new reconstructive techniques: use of Integra in combination with fibrin glue and negative-pressure therapy for reconstruction of acute and chronic wounds. Plast Reconstr Surg 113(2):525–530. doi: 10.1097/01.prs.0000100813.39746.5a. Epub 2004/02/06; PubMed PMID: 14758212PubMedCrossRefGoogle Scholar
  76. Jeschke MG, Patsouris D, Stanojcic M, Abdullahi A, Rehou S, Pinto R et al (2015) Pathophysiologic response to burns in the elderly. Biomedicine 2(10):1536–1548. doi: 10.1016/j.ebiom.2015.07.040. PubMed PMID: 26629550; PubMed Central PMCID: PMC4634201Google Scholar
  77. Kamolz LP, Kolbus A, Wick N, Mazal PR, Eisenbock B, Burjak S et al (2006) Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns J Int Soc Burn Inj 32(1):16–19. doi: 10.1016/j.burns.2005.08.020. Epub 2005/12/22; PubMed PMID: 16368194CrossRefGoogle Scholar
  78. Karagoz H, Yuksel F, Ulkur E, Evinc R (2009) Comparison of efficacy of silicone gel, silicone gel sheeting, and topical onion extract including heparin and allantoin for the treatment of postburn hypertrophic scars. Burns J Int Soc Burn Inj 35(8):1097–1103. doi: 10.1016/j.burns.2009.06.206. Epub 2009/09/22; PubMed PMID: 19766399CrossRefGoogle Scholar
  79. Karlsson L, Bondjers C, Betsholtz C (1999) Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 126(12):2611–2621. Epub 1999/05/20. PubMed PMID: 10331973PubMedGoogle Scholar
  80. Kato Y, Iwata T, Morikawa S, Yamato M, Okano T, Uchigata Y (2015) Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes 64(8):2723–2734. doi: 10.2337/db14-1133. Epub 2015/03/22; PubMed PMID: 25795216PubMedCrossRefGoogle Scholar
  81. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212(3):702–709. doi: 10.1002/jcp.21068. Epub 2007/05/05; PubMed PMID: 17477371PubMedCrossRefGoogle Scholar
  82. Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D et al (2012) Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract 66(4):384–393. doi: 10.1111/j.1742-1241.2011.02886.x. Epub 2012/01/31; PubMed PMID: 22284892PubMedCrossRefGoogle Scholar
  83. Knudtzon S (1974) In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 43(3):357–361. Epub 1974/03/01. PubMed PMID: 4811820PubMedGoogle Scholar
  84. Lam MT, Nauta A, Meyer NP, Wu JC, Longaker MT (2013) Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng A 19(5–6):738–747. doi: 10.1089/ten.TEA.2012.0480. Epub 2012/10/18; PubMed PMID: 23072446; PubMed Central PMCID: PMCPmc3566655CrossRefGoogle Scholar
  85. Landsman A, Taft D, Riemer K (2009) The role of collagen bioscaffolds, foamed collagen, and living skin equivalents in wound healing. Clin Podiatr Med Surg 26(4):525–533. doi: 10.1016/j.cpm.2009.08.012. Epub 2009/09/26; PubMed PMID: 19778686PubMedCrossRefGoogle Scholar
  86. Lataillade JJ, Doucet C, Bey E, Carsin H, Huet C, Clairand I et al (2007) New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regen Med 2(5):785–794. doi: 10.2217/17460751.2.5.785. Epub 2007/10/03; PubMed PMID: 17907931PubMedCrossRefGoogle Scholar
  87. Le H, Kleinerman R, Lerman OZ, Brown D, Galiano R, Gurtner GC et al (2008) Hedgehog signaling is essential for normal wound healing. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 16(6):768–773. doi: 10.1111/j.1524-475X.2008.00430.x. Epub 2009/01/09; PubMed PMID: 19128247CrossRefGoogle Scholar
  88. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ et al (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J: Off J Jpn Circ Soc 76(7):1750–1760. Epub 2012/04/14. PubMed PMID: 22498564CrossRefGoogle Scholar
  89. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC (2003) Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol 162(1):303–312. doi: 10.1016/s0002-9440(10)63821-7. Epub 2003/01/01; PubMed PMID: 12507913; PubMed Central PMCID: PMCPmc1851127PubMedPubMedCentralCrossRefGoogle Scholar
  90. Liu Y, Liu Y, Wang P, Tian H, Ai J, Liu Y et al (2014) Autologous bone marrow stem cell transplantation for the treatment of postoperative hand infection with a skin defect in diabetes mellitus: a case report. Oncol Lett 7(6):1857–1862. doi: 10.3892/ol.2014.1998. Epub 2014/06/17; PubMed PMID: 24932248; PubMed Central PMCID: PMCPmc4049741PubMedPubMedCentralGoogle Scholar
  91. Lough DM, Yang M, Blum A, Reichensperger JD, Cosenza NM, Wetter N et al (2014) Transplantation of the LGR6+ epithelial stem cell into full-thickness cutaneous wounds results in enhanced healing, nascent hair follicle development, and augmentation of angiogenic analytes. Plast Reconstr Surg 133(3):579–590. doi: 10.1097/prs.0000000000000075. Epub 2014/02/28; PubMed PMID: 24572851PubMedCrossRefGoogle Scholar
  92. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S et al (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92(1):26–36. doi: 10.1016/j.diabres.2010.12.010. Epub 2011/01/11; PubMed PMID: 21216483PubMedCrossRefGoogle Scholar
  93. Luo G, Cheng W, He W, Wang X, Tan J, Fitzgerald M et al (2010) Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 18(5):506–513. doi: 10.1111/j.1524-475X.2010.00616.x. Epub 2010/09/16; PubMed PMID: 20840520CrossRefGoogle Scholar
  94. Ma D, Kua JE, Lim WK, Lee ST, Chua AW (2015) In vitro characterization of human hair follicle dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing. Cytotherapy 17(8):1036–1051. doi: 10.1016/j.jcyt.2015.04.001. Epub 2015/05/20; PubMed PMID: 25981558PubMedCrossRefGoogle Scholar
  95. Macintyre L, Baird M (2006) Pressure garments for use in the treatment of hypertrophic scars – a review of the problems associated with their use. Burns J Int Soc Burn Inj 32(1):10–15. doi: 10.1016/j.burns.2004.06.018. Epub 2006/01/18; PubMed PMID: 16413399CrossRefGoogle Scholar
  96. Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH (2011) Macrophages in skin injury and repair. Immunobiology 216(7):753–762. doi: 10.1016/j.imbio.2011.01.001. Epub 2011/02/02; PubMed PMID: 21281986PubMedCrossRefGoogle Scholar
  97. Margolis DJ, Allen-Taylor L, Hoffstad O, Berlin JA (2005) Diabetic neuropathic foot ulcers and amputation. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 13(3):230–236. doi: 10.1111/j.1067-1927.2005.130303.x. Epub 2005/06/15; PubMed PMID: 15953040CrossRefGoogle Scholar
  98. Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G et al (2013) Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res 185(1):36–44. doi: 10.1016/j.jss.2013.05.024. Epub 2013/06/19; PubMed PMID: 23773718PubMedCrossRefGoogle Scholar
  99. Martin P, Nunan R (2015) Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 173(2):370–378. doi: 10.1111/bjd.13954. Epub 2015/07/16; PubMed PMID: 26175283; PubMed Central PMCID: PMCPmc4671308PubMedPubMedCentralCrossRefGoogle Scholar
  100. Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA (2010) Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am J Pathol 176(1):98–107. doi: 10.2353/ajpath.2010.090283. Epub 2009/12/05; PubMed PMID: 19959810; PubMed Central PMCID: PMCPmc2797873PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA et al (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–262. doi: 10.1038/nature11393. Epub 2012/09/04; PubMed PMID: 22940863PubMedCrossRefGoogle Scholar
  102. Mast BA, Schultz GS (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 4(4):411–420. doi: 10.1046/j.1524-475X.1996.40404.x. Epub 1996/10/01; PubMed PMID: 17309691CrossRefGoogle Scholar
  103. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1(2):142–149. doi: 10.5966/sctm.2011-0018. Epub 2012/12/01; PubMed PMID: 23197761; PubMed Central PMCID: PMCPmc3659685PubMedPubMedCentralCrossRefGoogle Scholar
  104. McGuckin C, Forraz N, Baradez MO, Basford C, Dickinson AM, Navran S et al (2006) Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp 66(4):321–329. Epub 2007/02/03. PubMed PMID: 17269167Google Scholar
  105. Mehanna RA, Nabil I, Attia N, Bary AA, Razek KA, Ahmed TA et al (2015) The effect of bone marrow-derived mesenchymal stem cells and their conditioned media topically delivered in fibrin glue on chronic wound healing in rats. Biomed Res Int 2015:846062. doi: 10.1155/2015/846062. Epub 2015/08/04; PubMed PMID: 26236740; PubMed Central PMCID: PMCPmc4508387PubMedPubMedCentralCrossRefGoogle Scholar
  106. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L et al (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32(1):112–122. Epub 2004/02/18. PubMed PMID: 14964727PubMedCrossRefGoogle Scholar
  107. Mendez JJ, Ghaedi M, Sivarapatna A, Dimitrievska S, Shao Z, Osuji CO et al (2015) Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials 40:61–71. doi: 10.1016/j.biomaterials.2014.11.011. Epub 2014/12/01; PubMed PMID: 25433608; PubMed Central PMCID: PMCPmc4268422PubMedCrossRefGoogle Scholar
  108. Meruane MA, Rojas M, Marcelain K (2012) The use of adipose tissue-derived stem cells within a dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis. Plast Reconstr Surg 130(1):53–63. doi: 10.1097/PRS.0b013e3182547e04. Epub 2012/03/16; PubMed PMID: 22418720PubMedCrossRefGoogle Scholar
  109. Morasso MI, Tomic-Canic M (2005) Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell Auspices Eur Cell Biol Organ 97(3):173–183. doi: 10.1042/bc20040098. Epub 2005/02/18; PubMed PMID: 15715523; PubMed Central PMCID: PMCPmc1283090Google Scholar
  110. Moriyama M, Durham AD, Moriyama H, Hasegawa K, Nishikawa S, Radtke F et al (2008) Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell 14(4):594–604. doi: 10.1016/j.devcel.2008.01.017. Epub 2008/04/16; PubMed PMID: 18410734PubMedCrossRefGoogle Scholar
  111. Mustoe TA, O’Shaughnessy K, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117(7 Suppl):35s–41s. doi: 10.1097/01.prs.0000225431.63010.1b. Epub 2006/06/27; PubMed PMID: 16799373PubMedCrossRefGoogle Scholar
  112. Nan W, Liu R, Chen H, Xu Z, Chen J, Wang M et al (2015) Umbilical cord mesenchymal stem cells combined with a collagen fibrin double-layered membrane accelerates wound healing. Wounds 27(5):134–140. Epub 2015/05/13. PubMed PMID: 25965183PubMedGoogle Scholar
  113. National Diabetes Statistical Report [Internet] (2014) Available from: http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf
  114. Niemann C, Unden AB, Lyle S, Zouboulis Ch C, Toftgard R, Watt FM (2003) Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A 100(Suppl 1):11873–11880. doi: 10.1073/pnas.1834202100. Epub 2003/08/15; PubMed PMID: 12917489; PubMed Central PMCID: PMCPmc304101PubMedPubMedCentralCrossRefGoogle Scholar
  115. Okuse T, Chiba T, Katsuumi I, Imai K (2005) Differential expression and localization of WNTs in an animal model of skin wound healing. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 13(5):491–497. doi: 10.1111/j.1067-1927.2005.00069.x. Epub 2005/09/24; PubMed PMID: 16176457CrossRefGoogle Scholar
  116. Okuyama R, Tagami H, Aiba S (2008) Notch signaling: its role in epidermal homeostasis and in the pathogenesis of skin diseases. J Dermatol Sci 49(3):187–194. doi: 10.1016/j.jdermsci.2007.05.017. Epub 2007/07/13; PubMed PMID: 17624739PubMedCrossRefGoogle Scholar
  117. Oshima H, Inoue H, Matsuzaki K, Tanabe M, Kumagai N (2002) Permanent restoration of human skin treated with cultured epithelium grafting – wound healing by stem cell based tissue engineering. Hum Cell 15(3):118–128. Epub 2003/04/22. PubMed PMID: 12703542PubMedCrossRefGoogle Scholar
  118. Outtz HH, Wu JK, Wang X, Kitajewski J (2010) Notch1 deficiency results in decreased inflammation during wound healing and regulates vascular endothelial growth factor receptor-1 and inflammatory cytokine expression in macrophages. J Immunol (Baltimore, MD: 1950) 185(7):4363–4373. doi: 10.4049/jimmunol.1000720. Epub 2010/08/27; PubMed PMID: 20739676; PubMed Central PMCID: PMCPmc3887523CrossRefGoogle Scholar
  119. Owens P, Han G, Li AG, Wang XJ (2008) The role of Smads in skin development. J Invest Dermatol 128(4):783–790. doi: 10.1038/sj.jid.5700969. Epub 2008/03/14; PubMed PMID: 18337711PubMedCrossRefGoogle Scholar
  120. Pastar I, Stojadinovic O, Krzyzanowska A, Barrientos S, Stuelten C, Zimmerman K et al (2010) Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Mol Med (Cambridge, Mass) 16(3–4):92–101. doi: 10.2119/molmed.2009.00149. Epub 2010/01/14; PubMed PMID: 20069132; PubMed Central PMCID: PMCPmc2804290Google Scholar
  121. Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L et al (2015) Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med 13:219. doi: 10.1186/s12967-015-0580-3. Epub 2015/07/15; PubMed PMID: 26152232; PubMed Central PMCID: PMCPmc4495634PubMedPubMedCentralCrossRefGoogle Scholar
  122. Puolakkainen PA, Reed MJ, Gombotz WR, Twardzik DR, Abrass IB, Sage HE (1995) Acceleration of wound healing in aged rats by topical application of transforming growth factor-beta(1). Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 3(3):330–339. doi: 10.1046/j.1524-475X.1995.t01-1-30314.x. Epub 1995/07/01; PubMed PMID: 17173560CrossRefGoogle Scholar
  123. Puzey G (2002) The use of pressure garments on hypertrophic scars. J Tissue Viability 12(1):11–15. Epub 2002/03/13. PubMed PMID: 11887386PubMedCrossRefGoogle Scholar
  124. Reckhenrich AK, Kirsch BM, Wahl EA, Schenck TL, Rezaeian F, Harder Y et al (2014) Surgical sutures filled with adipose-derived stem cells promote wound healing. PLoS ONE 9(3):e91169. doi: 10.1371/journal.pone.0091169. Epub 2014/03/15; PubMed PMID: 24625821; PubMed Central PMCID: PMCPmc3953386PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422. doi: 10.1097/01.prs.0000256047.47909.71. discussion 23-–4. Epub 2007/04/07; PubMed PMID: 17415234PubMedCrossRefGoogle Scholar
  126. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039. doi: 10.1158/0008-5472.can-04-4194. Epub 2005/04/19; PubMed PMID: 15833829PubMedGoogle Scholar
  127. Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J et al (2012) Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33(1):80–90. doi: 10.1016/j.biomaterials.2011.09.041. Epub 2011/10/04; PubMed PMID: 21963148; PubMed Central PMCID: PMCPmc3997302PubMedCrossRefGoogle Scholar
  128. Sabapathy V, Sundaram B, Sreelakshmi VM, Mankuzhy P, Kumar S (2014) Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS ONE 9(4):e93726. doi: 10.1371/journal.pone.0093726. Epub 2014/04/17; PubMed PMID: 24736473; PubMed Central PMCID: PMCPmc3988008PubMedPubMedCentralCrossRefGoogle Scholar
  129. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells (Dayton, Ohio) 28(3):585–596. doi: 10.1002/stem.269. Epub 2009/12/08; PubMed PMID: 19967788; PubMed Central PMCID: PMCPmc2962904Google Scholar
  130. Sanmano B, Mizoguchi M, Suga Y, Ikeda S, Ogawa H (2005) Engraftment of umbilical cord epithelial cells in athymic mice: in an attempt to improve reconstructed skin equivalents used as epithelial composite. J Dermatol Sci 37(1):29–39. doi: 10.1016/j.jdermsci.2004.10.008. Epub 2004/12/28; PubMed PMID: 15619432PubMedCrossRefGoogle Scholar
  131. Sato M (2006) Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol 86(4):300–307. doi: 10.2340/00015555-0101. Epub 2006/07/29; PubMed PMID: 16874413PubMedCrossRefGoogle Scholar
  132. Schreier T, Degen E, Baschong W (1993) Fibroblast migration and proliferation during in vitro wound healing. A quantitative comparison between various growth factors and a low molecular weight blood dialysate used in the clinic to normalize impaired wound healing. Res Exp Med Z Gesamten Exp Med Einschliesslich Exp Chir 193(4):195–205. Epub 1993/01/01. PubMed PMID: 8235072Google Scholar
  133. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 17(2):153–162. doi: 10.1111/j.1524-475X.2009.00466.x. Epub 2009/03/27; PubMed PMID: 19320882CrossRefGoogle Scholar
  134. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K et al (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 11(Suppl 1):S1–28. Epub 2003/03/26; PubMed PMID: 12654015CrossRefGoogle Scholar
  135. Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2011) Dynamic reciprocity in the wound microenvironment. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 19(2):134–148. doi: 10.1111/j.1524-475X.2011.00673.x. Epub 2011/03/03; PubMed PMID: 21362080; PubMed Central PMCID: PMCPmc3051353CrossRefGoogle Scholar
  136. Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P et al (2014) Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 6(264):264ra163. doi: 10.1126/scitranslmed.3009540. Epub 2014/11/28; PubMed PMID: 25429056; PubMed Central PMCID: PMCPmc4428910PubMedPubMedCentralCrossRefGoogle Scholar
  137. Seibold JR, Uitto J, Dorwart BB, Prockop DJ (1985) Collagen synthesis and collagenase activity in dermal fibroblasts from patients with diabetes and digital sclerosis. J Lab Clin Med 105(6):664–667. Epub 1985/06/01; PubMed PMID: 2987379PubMedGoogle Scholar
  138. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771. doi: 10.1111/j.1524-475X.2009.00543.x. PubMed PMID: 19903300; PubMed Central PMCID: PMC2810192PubMedPubMedCentralCrossRefGoogle Scholar
  139. Shen Y, Dai L, Li X, Liang R, Guan G, Zhang Z et al (2014) Epidermal stem cells cultured on collagen-modified chitin membrane induce in situ tissue regeneration of full-thickness skin defects in mice. PLoS ONE 9(2):e87557. doi: 10.1371/journal.pone.0087557. Epub 2014/02/12; PubMed PMID: 24516553; PubMed Central PMCID: PMCPmc3917838PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shi S, Jia S, Liu J, Chen G (2015) Accelerated regeneration of skin injury by co-transplantation of mesenchymal stem cells from Wharton’s jelly of the human umbilical cord mixed with microparticles. Cell Biochem Biophys 71(2):951–956. doi: 10.1007/s12013-014-0292-y. Epub 2014/11/06; PubMed PMID: 25370297PubMedCrossRefGoogle Scholar
  141. Signorini M, Clementoni MT (2007) Clinical evaluation of a new self-drying silicone gel in the treatment of scars: a preliminary report. Aesthet Plast Surg 31(2):183–187. doi: 10.1007/s00266-005-0122-0. Epub 2006/12/16; PubMed PMID: 17171514CrossRefGoogle Scholar
  142. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746. doi: 10.1056/nejm199909023411006. Epub 1999/09/02; PubMed PMID: 10471461PubMedCrossRefGoogle Scholar
  143. Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293(2):217–228. doi: 10.1001/jama.293.2.217. Epub 2005/01/13; PubMed PMID: 15644549PubMedCrossRefGoogle Scholar
  144. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N et al (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science (New York, NY) 327(5971):1385–1389. doi: 10.1126/science.1184733. Epub 2010/03/13; PubMed PMID: 20223988CrossRefGoogle Scholar
  145. Snyder RJ (2005) Treatment of nonhealing ulcers with allografts. Clin Dermatol 23(4):388–395. doi: 10.1016/j.clindermatol.2004.07.020. Epub 2005/07/19; PubMed PMID: 16023934PubMedCrossRefGoogle Scholar
  146. Soo C, Beanes SR, Hu FY, Zhang X, Dang C, Chang G et al (2003) Ontogenetic transition in fetal wound transforming growth factor-beta regulation correlates with collagen organization. Am J Pathol 163(6):2459–2476. Epub 2003/11/25. PubMed PMID: 14633618; PubMed Central PMCID: PMCPmc1892380PubMedPubMedCentralCrossRefGoogle Scholar
  147. St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS et al (1998) Sonic hedgehog signaling is essential for hair development. Curr Biol: CB 8(19):1058–1068. Epub 1998/10/13. PubMed PMID: 9768360PubMedCrossRefGoogle Scholar
  148. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21(14):2724–2752. doi: 10.1089/scd.2011.0722. Epub 2012/04/04; PubMed PMID: 22468918PubMedCrossRefGoogle Scholar
  149. Strong AL, Bowles AC, MacCrimmon CP, Frazier TP, Lee SJ, Wu X et al (2015) Adipose stromal cells repair pressure ulcers in both young and elderly mice: potential role of adipogenesis in skin repair. Stem Cells Transl Med 4(6):632–642. doi: 10.5966/sctm.2014-0235. Epub 2015/04/23; PubMed PMID: 25900728; PubMed Central PMCID: PMCPmc4449094PubMedPubMedCentralCrossRefGoogle Scholar
  150. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi: 10.1016/j.cell.2006.07.024. Epub 2006/08/15; PubMed PMID: 16904174PubMedCrossRefGoogle Scholar
  151. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi: 10.1016/j.cell.2007.11.019. Epub 2007/11/24; PubMed PMID: 18035408PubMedCrossRefGoogle Scholar
  152. Tong C, Hao H, Xia L, Liu J, Ti D, Dong L et al (2015) Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc. doi: 10.1111/wrr.12369. Epub 2015/10/16; PubMed PMID: 26463737Google Scholar
  153. Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E et al (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track – letter. Cancer Res 70(15):6393–6396. doi: 10.1158/0008-5472.can-10-1305. Epub 2010/07/16; PubMed PMID: 20631079PubMedCrossRefGoogle Scholar
  154. Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F et al (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 7(6):442–452. Epub 2000/01/13; PubMed PMID: 10633003CrossRefGoogle Scholar
  155. Tsourdi E, Barthel A, Rietzsch H, Reichel A, Bornstein SR (2013) Current aspects in the pathophysiology and treatment of chronic wounds in diabetes mellitus. Biomed Res Int 2013:385641. doi: 10.1155/2013/385641. Epub 2013/05/09; PubMed PMID: 23653894; PubMed Central PMCID: PMCPmc3638655PubMedPubMedCentralCrossRefGoogle Scholar
  156. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al (2004) Defining the epithelial stem cell niche in skin. Science (New York, NY) 303(5656):359–363. doi: 10.1126/science.1092436. Epub 2003/12/13; PubMed PMID: 14671312; PubMed Central PMCID: PMCPmc2405920CrossRefGoogle Scholar
  157. Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2014) The effect of bone-marrow-derived stem cells and adipose-derived stem cells on wound contraction and epithelization. Adv Wound Care 3(6):405–413. doi: 10.1089/wound.2014.0539. Epub 2014/06/19; PubMed PMID: 24940554; PubMed Central PMCID: PMCPmc4048969CrossRefGoogle Scholar
  158. Vagnozzi AN, Reiter JF, Wong SY (2015) Hair follicle and interfollicular epidermal stem cells make varying contributions to wound regeneration. Cell Cycle (Georgetown, Tex) 14(21):3408–3417. doi: 10.1080/15384101.2015.1090062. Epub 2015/09/24; PubMed PMID: 26398918CrossRefGoogle Scholar
  159. Varga J, Rosenbloom J, Jimenez SA (1987) Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247(3):597–604. Epub 1987/11/01. PubMed PMID: 3501287; PubMed Central PMCID: PMCPmc1148454PubMedPubMedCentralCrossRefGoogle Scholar
  160. Vojtassak J, Danisovic L, Kubes M, Bakos D, Jarabek L, Ulicna M et al (2006) Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neurol Endocrinol Lett 27(Suppl 2):134–137. Epub 2006/12/13. PubMed PMID: 17159798Google Scholar
  161. Watt FM, Fujiwara H (2011) Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 3(4):a005124. doi: 10.1101/cshperspect.a005124. Epub 2011/03/29; PubMed PMID: 21441589; PubMed Central PMCID: PMCPmc3062212PubMedPubMedCentralCrossRefGoogle Scholar
  162. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870. doi: 10.1152/physrev.00031.2002. Epub 2003/07/05; PubMed PMID: 12843410PubMedGoogle Scholar
  163. Willital GH, Heine H (1994) Efficacy of Contractubex gel in the treatment of fresh scars after thoracic surgery in children and adolescents. Int J Clin Pharmacol Res 14(5–6):193–202. Epub 1994/01/01. PubMed PMID: 7672876PubMedGoogle Scholar
  164. Wilson A, Butler PE, Seifalian AM (2011) Adipose-derived stem cells for clinical applications: a review. Cell Prolif 44(1):86–98. doi: 10.1111/j.1365-2184.2010.00736.x. Epub 2011/01/05; PubMed PMID: 21199013PubMedCrossRefGoogle Scholar
  165. Wu Y, Wang J, Scott PG, Tredget EE (2007a) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen: Off Publ Wound Healing Soc Eur Tissue Repair Soc 15(Suppl 1):S18–S26. doi: 10.1111/j.1524-475X.2007.00221.x. Epub 2008/09/10; PubMed PMID: 17727462CrossRefGoogle Scholar
  166. Wu Y, Chen L, Scott PG, Tredget EE (2007b) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659. Epub 2007/07/07. doi: 2007-0226 [pii] 1634/stemcells.2007-0226. PubMed PMID: 17615264PubMedCrossRefGoogle Scholar
  167. Wu X, Wang G, Tang C, Zhang D, Li Z, Du D et al (2011) Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent. J Biomed Mater Res A 98(3):442–449. doi: 10.1002/jbm.a.33133. Epub 2011/06/11; PubMed PMID: 21661093PubMedCrossRefGoogle Scholar
  168. Wu Y, Peng Y, Gao D, Feng C, Yuan X, Li H et al (2015) Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-beta3-dependent activation. Int J Low Extrem Wounds 14(1):50–62. doi: 10.1177/1534734614568373. Epub 2015/04/11; PubMed PMID: 25858630PubMedCrossRefGoogle Scholar
  169. Yang R, Zheng Y, Burrows M, Liu S, Wei Z, Nace A et al (2014) Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nat Commun 5:3071. doi: 10.1038/ncomms4071. Epub 2014/01/29; PubMed PMID: 24468981; PubMed Central PMCID: PMCPmc4049184PubMedPubMedCentralGoogle Scholar
  170. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y et al (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121(3):860–877. doi: 10.1097/01.prs.0000299922.96006.24. Epub 2008/03/05; PubMed PMID: 18317135PubMedCrossRefGoogle Scholar
  171. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 318(5858):1917–1920. doi: 10.1126/science.1151526. Epub 2007/11/22; PubMed PMID: 18029452CrossRefGoogle Scholar
  172. Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J (2008) Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng A 14(6):1025–1036. doi: 10.1089/ten.tea.2007.0289. Epub 2008/05/15; PubMed PMID: 18476809CrossRefGoogle Scholar
  173. Zhang Q, Liu LN, Yong Q, Deng JC, Cao WG (2015) Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther 6:145. doi: 10.1186/s13287-015-0133-y. Epub 2015/08/19; PubMed PMID: 26282394; PubMed Central PMCID: PMCPmc4539671PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zheng K, Wu W, Yang S, Huang L, Chen J, Gong C et al (2015) Bone marrow mesenchymal stem cell implantation for the treatment of radioactivity induced acute skin damage in rats. Mol Med Rep 12(5):7065–7071. doi: 10.3892/mmr.2015.4270. Epub 2015/09/02; PubMed PMID: 26323987PubMedGoogle Scholar
  175. Zimmerlin L, Rubin JP, Pfeifer ME, Moore LR, Donnenberg VS, Donnenberg AD (2013) Human adipose stromal vascular cell delivery in a fibrin spray. Cytotherapy 15(1):102–108. doi: 10.1016/j.jcyt.2012.10.009. Epub 2012/12/25; PubMed PMID: 23260090; PubMed Central PMCID: PMCPmc4159959PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. doi: 10.1091/mbc.E02-02-0105. Epub 2002/12/12; PubMed PMID: 12475952; PubMed Central PMCID: PMCPmc138633PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid R (2000) Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes 49(9):1451–1458. Epub 2000/09/02. PubMed PMID: 10969828PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yusef Yousuf
    • 1
    • 2
  • Saeid Amini-Nik
    • 2
    • 3
    • 4
  • Marc G. Jeschke
    • 1
    • 2
    • 4
    • 5
    • 6
  1. 1.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  2. 2.Sunnybrook Research InstituteTorontoCanada
  3. 3.Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  4. 4.Department of Surgery, Division of Plastic SurgeryUniversity of TorontoTorontoCanada
  5. 5.Department of ImmunologyUniversity of TorontoTorontoCanada
  6. 6.Ross-Tilley Burn CentreSunnybrook Health Sciences CentreTorontoCanada

Personalised recommendations