Novel Biomarkers at Risk Stratification of Diabetes Mellitus Patients

Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

Type 2 diabetes mellitus (T2DM) remains a leading cause of cardiovascular (CV) events and diseases worldwide. There is large body of evidence regarding use of the cardiac biomarkers to risk stratification at higher CV risk individuals who belong to general population and cohort with established CV disease. Although T2DM patients have higher incidence of macrovascular and microvascular CV complications than the general population, whether cardiac biomarkers would be effective to risk stratification of the T2DM is not fully understood. The chapter is dedicated to the summary of our knowledge regarding clinical implementation of the biomarker-based strategy of the CV risk assessment in T2DM patient population. The role of natriuretic peptides, galectin-3, solubilized ST, asymmetric dimethylarginine, interleukins, growth differentiation factor-15, as well as biomarkers of endothelial dysfunction are widely discussed.

Keywords

Diabetes mellitus Cardiovascular disease Risk Biomarkers Prediction Mortality 

Abbreviations

CAD

Coronary artery disease

CV

Cardiovascular

GDF-15

Growth differentiation factor-15

HbA1c

Glycated hemoglobin

hs-CRP

High-sensitivity C-reactive protein

hs-cTnT

High-sensitivity cardiac troponin T

IFG

Impaired fasting glucose

IGT

Impaired glucose tolerance

IL

Interleukin

NPs

Natriuretic peptides

ST2

A member of the interleukin-1 receptor family protein of tumorigenicity

T2DM

Type 2 diabetes mellitus

References

  1. Achelrod D, Gray A, Preiss D, Mihaylova B (2017) Cholesterol- and blood-pressure-lowering drug use for secondary cardiovascular prevention in 2004–2013 Europe. Eur J Prev Cardiol 24(4):426–436PubMedCrossRefGoogle Scholar
  2. Adela R, Banerjee SK (2015) GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabetes Res 2015:490842PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akoum N (2016) New perspectives on atrial fibrillation and stroke. Heart. doi: 10.1136/heartjnl-2015-309066. [Epub ahead of print]PubMedGoogle Scholar
  4. Alexander N, Matsushita K, Sang Y, Ballew S, Mahmoodi BK, Astor BC et al (2015) Kidney measures with diabetes and hypertension on cardiovascular disease: the Atherosclerosis Risk in Communities study. Am J Nephrol 41(4–5):409–417PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alford AI, Hankenson KD (2006) Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone 38(6):749–757PubMedCrossRefGoogle Scholar
  6. Alonso N, Lupón J, Barallat J, de Antonio M, Domingo M, Zamora E et al (2016) Impact of diabetes on the predictive value of heart failure biomarkers. Cardiovasc Diabetol 15(1):151PubMedPubMedCentralCrossRefGoogle Scholar
  7. Altabas V (2015) Diabetes, endothelial dysfunction, and vascular repair: what should a Diabetologist keep his eye on? Int J Endocrinol 2015:848272PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S et al (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 12(5):614–627PubMedCrossRefGoogle Scholar
  9. Batra J, Buttar RS, Kaur P, Kreimerman J, Melamed ML (2016) FGF-23 and cardiovascular disease: review of literature. Curr Opin Endocrinol Diabetes Obes 23(6):423–429PubMedCrossRefGoogle Scholar
  10. Berezin AE (2015) Biological markers of cardiovascular diseases. Part 3. Diagnostic and prognostic value of biological markers in stratification of patients with cardiometabolic risk. Lambert Academic Publishing GmbH, Moscow, p 300Google Scholar
  11. Berezin AE (2016a) Biomarkers for cardiovascular risk in patients with diabetes. Heart. doi: 10.1136/heartjnl-2016-310197. pii: heartjnl-2016-310197PubMedGoogle Scholar
  12. Berezin AE (2016b) Diabetes mellitus related biomarker: the predictive role of growth-differentiation factor-15. Diabetes Metab Syndr 10(1 Suppl 1):S154–S157PubMedCrossRefGoogle Scholar
  13. Berezin AE (2016c) Is rationale to decrease serum osteoprotegerin and fetuin-A in type 2 diabetes mellitus patients? Diabetes Metab Syndr 10(3):169–170PubMedCrossRefGoogle Scholar
  14. Berezin AE, Kremzer AA (2015) Impaired phenotype of circulating endothelial microparticles in chronic heart failure patients: relevance to body mass index. Diabetes Metab Syndr 9(4):230–236PubMedCrossRefGoogle Scholar
  15. Berezin AE, Kremzer AA, Samura TA, Martovitskaya YV (2014) Circulating endothelial-derived apoptotic microparticles in the patients with ischemic symptomatic chronic heart failure: relevance of pro-inflammatory activation and outcomes. Int Cardiovasc Res J 8(3):116–123PubMedPubMedCentralGoogle Scholar
  16. Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV, Gronenko EA (2016) Data regarding association between serum osteoprotegerin level, numerous of circulating endothelial-derived and mononuclear-derived progenitor cells in patients with metabolic syndrome. Data Brief 8:717–722PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bonnet N (2017) Bone-derived factors: a new gateway to regulate glycemia. Calcif Tissue Int 100(2):174–183PubMedCrossRefGoogle Scholar
  18. Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T et al (2016) Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American Heart Association. Circulation 134:e535. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  19. Brutsaert EF, Biggs ML, Delaney JA, Djoussé L, Gottdiener JS, Ix JH et al (2016) Longitudinal assessment of N-terminal pro-B-type natriuretic peptide and risk of diabetes in older adults: the cardiovascular health study. Metabolism 65(10):1489–1497PubMedCrossRefGoogle Scholar
  20. Carlsson AC, Sundström J, Carrero JJ, Gustafsson S, Stenemo M, Larsson A et al (2017) Use of a proximity extension assay proteomics chip to discover new biomarkers associated with albuminuria. Eur J Prev Cardiol 24(4):340–348PubMedCrossRefGoogle Scholar
  21. Cavusoglu E, Marmur JD, Chhabra S, Hojjati MR, Yanamadala S, Chopra V et al (2015) Elevated baseline plasma phospholipid protein (PLTP) levels are an independent predictor of long-term all-cause mortality in patients with diabetes mellitus and known or suspected coronary artery disease. Atherosclerosis 239(2):503–508PubMedPubMedCentralCrossRefGoogle Scholar
  22. Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95:858–866PubMedCrossRefGoogle Scholar
  23. Coburn E, Frishman W (2014) Comprehensive review of the prognostic value of galectin-3 in heart failure. Cardiol Rev 22(4):171–175PubMedCrossRefGoogle Scholar
  24. Coué M, Moro C (2015) Natriuretic peptide control of energy balance and glucose homeostasis. Biochimie. doi: 10.1016/j.biochi.2015.05.017. pii: S0300–-9084(15)00163-7; [Epub ahead of print]PubMedGoogle Scholar
  25. Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89(2):265–272PubMedCrossRefGoogle Scholar
  26. Dąbrowski FA, Jarmużek P, Gondek A, Cudnoch-Jędrzejewska A, Bomba-Opoń D, Wielgoś M (2016) First and third trimester serum concentrations of adropin and copeptin in gestational diabetes mellitus and normal pregnancy. Ginekol Pol 87(9):629–634PubMedCrossRefGoogle Scholar
  27. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397PubMedCrossRefGoogle Scholar
  28. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ (2009) Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail 11(9):811–817PubMedCrossRefGoogle Scholar
  29. Di Pino A, Urbano F, Piro S, Purrello F, Rabuazzo AM (2016) Update on pre-diabetes: focus on diagnostic criteria and cardiovascular risk. World J Diabetes 7(18):423–432PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dixon BS (2016) Is change in albuminuria a surrogate marker for cardiovascular and renal outcomes in type 1 diabetes? Clin J Am Soc Nephrol 11:1921. pii: CJN.09540916. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  31. Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P (2014) Usefulness of growth differentiation factor-15 levels to predict diabetic cardiomyopathy in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol 114(6):890–894PubMedCrossRefGoogle Scholar
  32. Duffy JY, Hameed AB (2015) Cardiovascular disease screening. Semin Perinatol. doi: 10.1053/j.semperi.2015.05.004. [Epub ahead of print]PubMedGoogle Scholar
  33. Dumic J, Dabelic S, Flögel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760(4):616–635PubMedCrossRefGoogle Scholar
  34. Enhorning S, Wang TJ, Nilsson PM (2010) Plasma copeptin and the risk of diabetes mellitus. Circulation 121:2102–2108PubMedPubMedCentralCrossRefGoogle Scholar
  35. Enhörning S, Hedblad B, Nilsson PM, Engström G, Melander O (2015) Copeptin is an independent predictor of diabetic heart disease and death. Am Heart J 169(4):549–56.e1PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhangn HR, Breit SN (1999) MIC-1 is a novel TGF-β superfamily cytokine associated with macrophage activation. J Leukoc Biol 65(1):2–5PubMedGoogle Scholar
  37. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fu S, Ping P, Luo L, Ye P (2016) Deep analyses of the associations of a series of biomarkers with insulin resistance, metabolic syndrome, and diabetes risk in nondiabetic middle-aged and elderly individuals: results from a Chinese community-based study. Clin Interv Aging 11:1531–1538PubMedPubMedCentralCrossRefGoogle Scholar
  39. Goetze JP, Zois NE (2016) Cardiac natriuretic peptides in plasma: from prediction to precision medicine. Lancet Diabetes Endocrinol 4(10):803–805PubMedCrossRefGoogle Scholar
  40. Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C et al (2007) Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab 92:3719–3727PubMedCrossRefGoogle Scholar
  41. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C et al (2015) Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. doi: 10.1016/j.cmet.2015.09.002. [Epub ahead of print]PubMedPubMedCentralGoogle Scholar
  42. Gupta DK, Wang TJ (2015) Natriuretic peptides and cardiometabolic health. Circ J 79(8):1647–1655PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hitsumoto T, Shirai K (2015) Factors affecting high-sensitivity cardiac troponin T elevation in Japanese metabolic syndrome patients. Diabetes Metab Syndr Obes 9:157–162CrossRefGoogle Scholar
  44. Hughes MF, Appelbaum S, Havulinna AS, Jagodzinski A, Zeller T, Kee F, FINRISK and BiomarCaRE investigators et al (2014) ST2 may not be a useful predictor for incident cardiovascular events, heart failure and mortality. Heart 100(21):1715–1721Google Scholar
  45. Imai Y, Dobrian AD, Weaver JR, Butcher MJ, Cole BK, Galkina EV et al (2013) Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab 15(Suppl 3):117–129PubMedPubMedCentralCrossRefGoogle Scholar
  46. Inoue N, Sawamura T (2007) Lectin-like oxidized LDL receptor-1 as extracellular chaperone receptor: its versatile functions and human diseases. Methods 43:218–222PubMedCrossRefGoogle Scholar
  47. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y et al (2006) B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol 47:742–748PubMedCrossRefGoogle Scholar
  48. Jagadapillai R, Rane MJ, Lin X, Roberts AM, Hoyle GW, Cai L, Gozal E (2016) Diabetic microvascular disease and pulmonary fibrosis: the contribution of platelets and systemic inflammation. Int J Mol Sci 17(11.) pii: E:1853PubMedCentralCrossRefGoogle Scholar
  49. Johnson JL (2014) Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res 103(4):452–460PubMedCrossRefGoogle Scholar
  50. Kharroubi AT, Darwish HM (2015) Diabetes mellitus: the epidemic of the century. World J Diabetes 6(6):850–867PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kong P, Cavalera M, Frangogiannis NG (2014) The role of thrombospondin (TSP)-1 in obesity and diabetes. Adipocytes 3(1):81–84CrossRefGoogle Scholar
  52. Krintus M, Kozinski M, Kubica J, Sypniewska G (2014) Critical appraisal of inflammatory markers in cardiovascular risk stratification. Crit Rev Clin Lab Sci 51(5):263–279PubMedCrossRefGoogle Scholar
  53. Kruzliak P, Berezin A, Kremzer A, Samura T, Benacka R, Mozos I et al (2016) Global longitudinal strain and strain rate in type two diabetes patients with chronic heart failure: relevance to osteoprotegerin. Folia Med (Plovdiv) 58(3):164–173Google Scholar
  54. Li Y, Tong X, Rumala C, Clemons K, Wang S (2011) Thrombospondin-1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model. PLoS One 6:e26656PubMedPubMedCentralCrossRefGoogle Scholar
  55. Li H, Gao F, Xue Y, Qian Y (2014) Value of plasma growth differentiation factor-15 in diagnosis and evaluation of type 2 diabetic nephropathy. Nan Fang Yi Ke Da Xue Bao 34(3):387–390Google Scholar
  56. Li T, Ni L, Liu X, Wang Z, Liu C (2016a) High glucose induces the expression of osteopontin in blood vessels in vitro and in vivo. Biochem Biophys Res Commun 480(2):201–207PubMedCrossRefGoogle Scholar
  57. Li T, Liu X, Ni L, Wang Z, Wang W, Shi T, Liu X, Liu C (2016b) Perivascular adipose tissue alleviates inflammatory factors and stenosis in diabetic blood vessels. Biochem Biophys Res Commun 480(2):147–152PubMedCrossRefGoogle Scholar
  58. Llauradó G, Megia A, Cano A, Giménez-Palop O, Simón I, González-Sastre M et al (2015) FGF-23/vitamin D Axis in type 1 diabetes: the potential role of mineral metabolism in arterial stiffness. PLoS One 10(10):e0140222PubMedPubMedCentralCrossRefGoogle Scholar
  59. Looker HC, Colombo M, Agakov F, Zeller T, Groop L, Thorand B, SUMMIT Investigators et al (2015) Protein biomarkers for the prediction of cardiovascular disease in type 2 diabetes. Diabetologia 58(6):1363–1371PubMedCrossRefGoogle Scholar
  60. Lubrano V, Balzan S (2015) Consolidated and emerging inflammatory markers in coronary artery disease. World J Exp Med 5(1):21–32PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mannarino E, Pirro M (2008) Endothelial injury and repair: a novel theory for atherosclerosis. Angiology 59:69S–72SPubMedCrossRefGoogle Scholar
  62. Marian AJ, Nambi V (2004) Biomarkers of cardiac disease. Expert Rev Mol Diagn 4:805–820PubMedCrossRefGoogle Scholar
  63. Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, del Cañizo-Gómez FJ (2014) Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes 5(4):444–470PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057PubMedCrossRefGoogle Scholar
  65. McAloon CJ, O’Hare P, Osman F, Randeva HS (2016) The interplay between heart failure, metabolism and body composition. Br J Hosp Med (Lond) 77(6):362–364CrossRefGoogle Scholar
  66. McCullough PA, Olobatoke A, Vanhecke TE (2011) Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med 12(4):200–210PubMedGoogle Scholar
  67. McEvoy JW, Lazo M, Chen Y, Shen L, Nambi V, Hoogeveen RC et al (2015) Patterns and determinants of temporal change in high-sensitivity cardiac troponin-T: the Atherosclerosis Risk in Communities Cohort study. Int J Cardiol 187:651–657PubMedPubMedCentralCrossRefGoogle Scholar
  68. McKie PM, Rodeheffer RJ, Cataliotti A, Martin FL, Urban LH, Mahoney DW et al (2006) Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide: biomarkers for mortality in a large community-based cohort free of heart failure. Hypertension 47:874–880PubMedPubMedCentralCrossRefGoogle Scholar
  69. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–869PubMedCrossRefGoogle Scholar
  70. Mellbin LG, Anselmino M, Rydén L (2010) Diabetes, prediabetes and cardiovascular risk. Eur J Cardiovasc Prev Rehabil 17(supplement 1):S9–S14PubMedCrossRefGoogle Scholar
  71. Morgenthaler NG (2010) Copeptin: a biomarker of cardiovascular and renal function. Congest Heart Fail 16(Suppl. 1):S37–S44PubMedCrossRefGoogle Scholar
  72. Morgenthaler NG, Struck J, Alonso C (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52:112–119PubMedCrossRefGoogle Scholar
  73. Moro C (2016) Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 20(12):1445–1452PubMedCrossRefGoogle Scholar
  74. Myers GL, Christenson RH, Cushman M, Ballantyne CM, Cooper GR, Pfeiffer CM et al (2009) National Academy of Clinical Biochemistry Laboratory Medicine Practice guidelines: emerging biomarkers for primary prevention of cardiovascular disease. Clin Chem 55:378–384PubMedGoogle Scholar
  75. Natriuretic Peptides Studies Collaboration (2016) Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis. Lancet Diabetes Endocrinol 4(10):840–849PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nayor M, Wang N, Larson MG, Vasan RS, Levy D, Ho JE (2015) Circulating galectin-3 is associated with cardiometabolic disease in the community. J Am Heart Assoc 5(1). doi: 10.1161/JAHA.115.002347
  77. Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M et al (2010) Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 12(11):1223–1228PubMedCrossRefGoogle Scholar
  78. Otake H, Shite J, Shinke T, Watanabe S, Tanino Y, Ogasawara D et al (2008) Relation between plasma adiponectin, high-sensitivity C-reactive protein, and coronary plaque components in patients with acute coronary syndrome. Am J Cardiol 101:1–7PubMedCrossRefGoogle Scholar
  79. Ozturk D, Celik O, Satilmis S, Aslan S, Erturk M, Cakmak HA et al (2015) Association between serum galectin-3 levels and coronary atherosclerosis and plaque burden/structure in patients with type 2 diabetes mellitus. Coron Artery Dis 26(5):396–401PubMedCrossRefGoogle Scholar
  80. Panteghini M (2004) Role and importance of biochemical markers in clinical cardiology. Eur Heart J 25:1187–1196PubMedCrossRefGoogle Scholar
  81. Papapanagiotou A, Siasos G, Kassi E, Gargalionis AN, Papavassiliou AG (2015) Novel inflammatory markers in hyperlipidemia: clinical implications. Curr Med Chem 22(23):2727–2743PubMedCrossRefGoogle Scholar
  82. Pareek M, Nielsen ML, Leósdóttir M, Nilsson PM, Olsen MH (2015) Baseline cardiac troponin t levels are elevated in subjects with untreated diabetes mellitus: a cross-sectional study. J Hypertens 33(Suppl 1):e54–e55PubMedCrossRefGoogle Scholar
  83. Pavo N, Wurm R, Neuhold S, Adlbrecht C, Vila G, Strunk G et al (2016) GDF-15 is associated with cancer incidence in patients with type 2 diabetes. Clin Chem 62:1612. pii: clinchem.2016.257212; [Epub ahead of print]PubMedCrossRefGoogle Scholar
  84. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pirro M, Schillaci G, Bagaglia F, Menecali C, Paltriccia R, Mannarino MR et al (2008) Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis 197(2):757–767PubMedCrossRefGoogle Scholar
  86. Pugliese G, Iacobini C, Ricci C, Blasetti Fantauzzi C, Menini S (2014) Galectin-3 in diabetic patients. Clin Chem Lab Med 52(10):1413–1423PubMedCrossRefGoogle Scholar
  87. Puri R, Nissen SE, Shao M, Elshazly MB, Kataoka Y, Kapadia SR et al (2016) Non-HDL cholesterol and triglycerides: implications for coronary atheroma progression and clinical events. Arterioscler Thromb Vasc Biol 36(11):2220–2228PubMedCrossRefGoogle Scholar
  88. Raffield LM, Hsu FC, Cox AJ, Carr JJ, Freedman BI, Bowden DW (2015) Predictors of all-cause and cardiovascular disease mortality in type 2 diabetes: diabetes heart study. Diabetol Metab Syndr 7:58PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ramos HR, Birkenfeld AL, de Bold AJ (2015) Interacting disciplines: cardiac natriuretic peptides and obesity: perspectives from an endocrinologist and a cardiologist. Endocr Connect 4(3):R25–R36PubMedPubMedCentralCrossRefGoogle Scholar
  90. Resl M, Clodi M, Vila G, Luger A, Neuhold S, Wurm R et al (2016) Targeted multiple biomarker approach in predicting cardiovascular events in patients with diabetes. Heart 102:1963. doi: 10.1136/heartjnl-2015-308949. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  91. Reynolds AN, Duncan A, Kruimer D, Venn BJ (2016) Glycated albumin is associated with body mass index in euglycemic adults but is not predictive of postprandial blood glucose response. J Clin Lab Anal. doi: 10.1002/jcla.22085. [Epub ahead of print]PubMedGoogle Scholar
  92. Rohatgi A, Patel P, Das SR, Ayers CR, Khera A, Martinez-Rumayor A et al (2012) Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: observations from the Dallas Heart Study. Clin Chem 58(1):172–182PubMedCrossRefGoogle Scholar
  93. Sanchez OA, Duprez DA, Bahrami H, Peralta CA, Daniels LB, Lima JA et al (2015) Changes in N-terminal pro-B-type natriuretic peptide and incidence of diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabete Metab 41(5):378–386. doi: 10.1016/j.diabet.2015.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E et al (2011) Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 123(13):1367–1376PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schiel R, Perenthaler TJ, Steveling A, Stein G (2016) Plasma copeptin in children and adolescents with type 1 diabetes mellitus in comparison to healthy controls. Diabetes Res Clin Pract 118:156–161PubMedCrossRefGoogle Scholar
  96. Scholte AJ, Schuijf JD, Kharagjitsingh AV, Dibbets-Schneider P, Stokkel MP, van der Wall EE et al (2009) Prevalence and predictors of an abnormal stress myocardial perfusion study in asymptomatic patients with type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 36:567–575PubMedCrossRefGoogle Scholar
  97. Schreier M, Schwartze JT, Landgraf K, Scheuermann K, Erbs S, Herberth G et al (2016) Osteopontin is BMI-independently related to early endothelial dysfunction in children. J Clin Endocrinol Metab 101(11):4161–4169PubMedCrossRefGoogle Scholar
  98. Scirica BM, Bhatt DL, Braunwald E, Raz I, Cavender MA, Im K et al (2016) Prognostic implications of biomarker assessments in patients with type 2 diabetes at high cardiovascular risk: a secondary analysis of a randomized clinical trial. JAMA Cardiol 1(9):989–998PubMedCrossRefGoogle Scholar
  99. Shah RV, Januzzi JL Jr (2014) Soluble ST2 and galectin-3 in heart failure. Clin Lab Med 34(1):87–97PubMedCrossRefGoogle Scholar
  100. Sörensen BM, Houben AJ, Berendschot TT, Schouten JS, Kroon AA, van der Kallen CJ et al (2016) Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction: the Maastricht study. Circulation 134(18):1339–1352PubMedCrossRefGoogle Scholar
  101. Stoiser B, Mortl D, Hulsmann M (2006) Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Investig 36:771–778CrossRefGoogle Scholar
  102. Talat M, Sherief L, El-Saadany H, Ahmed A, Saleh RM, Sakr M (2016) The role of osteopontin in the pathogenesis and complication of type 1 diabetes mellitus in children and adolescents. J Clin Res Pediatr Endocrinol 8(4):399–404PubMedPubMedCentralCrossRefGoogle Scholar
  103. Torremocha F, Hadjadj S, Carrie F, Rosenberg T, Herpin D, Marechaud R (2001) Prediction of major coronary events by coronary risk profile and silent myocardial ischaemia: prospective follow-up study of primary prevention in 72 diabetic patients. Diabete Metab 27:49–57PubMedGoogle Scholar
  104. Unsicker K, Spittau B, Krieglstein K (2013) The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev 24(4):373–384PubMedCrossRefGoogle Scholar
  105. Velho G, El Boustany R, Lefèvre G, Mohammedi K, Fumeron F, Potier L et al (2016) Plasma copeptin, kidney outcomes, ischemic heart disease, and all-cause mortality in people with long-standing type 1 diabetes. Diabetes Care 39:2288. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  106. Wang CB, Zong M, Lu SQ, Tian Z (2016) Plasma copeptin and functional outcome in patients with ischemic stroke and type 2 diabetes. J Diabetes Complicat 30(8):1532–1536PubMedCrossRefGoogle Scholar
  107. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N (2011) Impact of diabetes on cardiovascular disease risk and all-cause mortality in older men: influence of age at onset, diabetes duration, and established and novel risk factors. Arch Int Med 171:404–410CrossRefGoogle Scholar
  108. Wannamethee SG, Welsh P, Lennon L, Papacosta O, Whincup PH, Sattar N (2016) Copeptin and the risk of incident stroke, CHD and cardiovascular mortality in older men with and without diabetes: the British regional heart study. Diabetologia 59(9):1904–1912PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wende AR (2015) Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 10(1):25–38PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wohlfahrt P, Melenovsky V, Kotrc M, Benes J, Jabor A, Franekova J et al (2015) Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure. JACC Heart Fail 3(10):829–839PubMedCrossRefGoogle Scholar
  111. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH et al (2013) ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:e240–e327PubMedCrossRefGoogle Scholar
  112. Yang ZK, Shen Y, Shen WF, Pu LJ, Meng H, Zhang RY et al (2015) Elevated glycated albumin and reduced endogenous secretory receptor for advanced glycation endproducts levels in serum predict major adverse cardio-cerebral events in patients with type 2 diabetes and stable coronary artery disease. Int J Cardiol 197:241–247PubMedCrossRefGoogle Scholar
  113. Yen ST, Tan AK, Feisul MI (2016) Awareness and prevalence of diabetes, hypertension, and hypercholesterolemia in Malaysia. J Diabetes. doi: 10.1111/1753-0407.12502 PubMedGoogle Scholar
  114. Zaccardi F, Khan H, Laukkanen JA (2014) Diabetes mellitus and risk of sudden cardiac death: a systematic review and meta-analysis. Int J Cardiol 177:535–537PubMedCrossRefGoogle Scholar
  115. Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT et al (2015) Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 385(9982):2067–2076PubMedCrossRefGoogle Scholar
  116. Zeng Q, Dong SY, Wang ML, Li JM, Ren CL, Gao CQ (2016) Obesity and novel cardiovascular markers in a population without diabetes and cardiovascular disease in China. Prev Med 91:62–69PubMedCrossRefGoogle Scholar
  117. Zhu FX, Wu HL, Tu KS, Chen JX, Zhang M, Shi C (2016) Serum levels of copeptin are associated with type 2 diabetes and diabetic complications in Chinese population. J Diabetes Complicat 30(8):1566–1570PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cardiology Unit, Internal Medicine DepartmentState Medical UniversityZaporozhyeUkraine

Personalised recommendations