Stem Cell Therapy for Type-1 Diabetes Mellitus

  • Umang G. Thakkar
  • Aruna V. Vanikar
  • Hargovind L. Trivedi
Part of the Stem Cells in Clinical Applications book series (SCCA)


Type-1 diabetes mellitus (T1DM) is a chronic, multifactorial autoimmune disease involving progressive destruction of pancreatic β cells, ultimately resulting in loss of insulin production/secretion, causing hyperglycemia. Replacement of damaged β cells by cell therapy can mitigate this condition and reestablish normal metabolic control. Existing gold standard treatment for T1DM is islet transplantation. However it offers limited rescue from exogenous insulin requirement due to paucity of islets required to reinstate normal blood glucose, immune rejection, and most importantly limited availability of donors. These questions have opened up new horizons for research and management, such as stem cells (SCs), cellular reprogramming, and β-cell regeneration. Results from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably take up the center stage of management of DM in the coming years. SCs are cells with potential to differentiate into many types of cells/progeny and hold promise for providing abundant source of cells for treating T1DM. Surrogate β cells from non-β cells will prove efficient alternative sources, such as adult-/embryonic-/umbilical cord-derived cells. These will have intricate makeup of normal β cells like insulin secretion, which can be utilized in stimulation of β-cell renewal by replication/neogenesis. These cells have revealed increase in endogenous insulin production to some extent alleviating autoimmune demolition of β cells. The present review summarizes the historic as well as current knowledge of T1DM and describes development of cell therapeutics as a promising approach without undesirable side effects.


Type-1 diabetes mellitus Pancreas Insulin Stem cell therapy Embryonic stem cells Adult stem cells Insulin-secreting cells Regenerative medicine 



Adipose tissue-derived mesenchymal stem cell


Bone marrow


Dendritic cells


Diabetes control and complication trial research


Diagnostic criteria for DM


Diabetes mellitus


Embryonic stem cell


Extracellular vesicles


Glycosylated hemoglobin


Hematopoietic stem cell


Insulin-producing cell


Induced pluripotent stem cells


Insulin-producing stem cell


Insulin-secreting cell


Mesenchymal stem cell


Maturity onset diabetes of the young


Stem cell therapy


Type-1 diabetes mellitus


Type-2 diabetes mellitus


Umbilical cord blood


World Health Organization



Author acknowledges the immense help received from the scholars whose articles are cited and included in the references of this review chapter. The authors are also grateful to the author/editors/publishers of all those articles, journals, and books from where the literature for this chapter has been reviewed and discussed.


  1. Anzalone R, Iacono ML, Loria T et al (2011) Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev Rep 7:342–363CrossRefGoogle Scholar
  2. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697PubMedCrossRefGoogle Scholar
  3. Atkinson MA (2011a) It’s time to consider changing the rules: the rationale for rethinking control groups in clinical trials aimed at reversing type 1 diabetes. Diabetes 60:361–363PubMedPubMedCentralCrossRefGoogle Scholar
  4. Atkinson MA (2011b) Evaluating preclinical efficacy. Sci Transl Med 3:96cm22PubMedCrossRefGoogle Scholar
  5. Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 5:601–604PubMedCrossRefGoogle Scholar
  6. Atkinson MA, Bluestone JA, Eisenbarth GS et al (2011) How does type 1 diabetes develop?: the notion of homicide or beta-cell suicide revisited. Diabetes 60:1370–1379PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bach JF (2011) Anti-CD3 antibodies for type 1 diabetes: beyond expectations. Lancet 378:459–460PubMedCrossRefGoogle Scholar
  8. Balamurugan AN, Breite AG, Anazawa T, Loganathan G, Wilhelm JJ et al (2010) Successful human islet isolation and transplantation indicating the importance of class 1 collagenase and collagen degradation activity assay. Transplantation 89:954–961PubMedCrossRefGoogle Scholar
  9. Balamurugan AN, Naziruddin B, Lockridge A et al (2014) Islet product characteristics and factors related to successful human islet transplantation from the collaborative islet transplant registry (CITR) 1999–2010. Am J Transplant 14:2595–2606PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ball SG, Barber TM (2003) Molecular development of the pancreatic beta cell: implications for cell replacement therapy. Trends Endocrinol Metab 14:349–355PubMedCrossRefGoogle Scholar
  11. Ballinger WF, Lacy PE (1972) Transplantation of intact pancreatic islets in rats. Surgery 72:175–186PubMedGoogle Scholar
  12. Banting FG (1965) Diabetes, insulin, nobel lectures, physiology or medicine 1922–1941. Elsevier, Amsterdam. Google Scholar
  13. Barcala Tabarrozzi AE, Castro CN, Dewey RA (2013) Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin Exp Immunol 171:135–146PubMedPubMedCentralCrossRefGoogle Scholar
  14. Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454PubMedCrossRefGoogle Scholar
  15. Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM (1980) Sequence of the human insulin gene. Nature 284:26–32PubMedCrossRefGoogle Scholar
  16. Benedum J (1999) The early history of endocrine cell transplantation. J Mol Med 77:30–35PubMedCrossRefGoogle Scholar
  17. Ber I, Shternhall K, Perl S et al (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278:31950–31957PubMedCrossRefGoogle Scholar
  18. Blanton D, Han Z, Bierschenk L et al (2011) Reduced serum vitamin D-binding protein levels are associated with type 1 diabetes. Diabetes 60:2566–2570PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blyszczuk P, Asbrand C, Rozzo A et al (2004) Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 48:1095–1104PubMedCrossRefGoogle Scholar
  20. Bonner-Weir S (1991) Anatomy of the islet of Langerhans. In: Samols E (ed) The endocrine pancreas. Raven Press, New York, pp 15–27Google Scholar
  21. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas: a possible recapitulation of embryonic development. Diabetes 42:1715–1720PubMedCrossRefGoogle Scholar
  22. Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A, Feili-Hariri M (2009) Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 32:33–42PubMedCrossRefGoogle Scholar
  23. Bouwens L, Lu WG, De Krijger R (1997) Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 40:398–404PubMedCrossRefGoogle Scholar
  24. Bruno S, Deregibus MC, Camussi G (2015) The secretome of mesenchymal stromal cells: role of extracellular vesicle in the immunomodulation. Immunol Lett 168:154–158. pii: S0165-2478(15)00105-4PubMedCrossRefGoogle Scholar
  25. Burns CJ, Persaud SJ, Jones PM (2004) Stem cell therapy for diabetes: do we need to make beta cells? J Endocrinol 183:437–443PubMedCrossRefGoogle Scholar
  26. Burt RK, Oyama Y, Traynor A, Kenyon NS (2002) Hematopoietic stem cell therapy for type 1 diabetes: induction of tolerance and islet cell neogenesis. Autoimmun Rev 1:133–138PubMedCrossRefGoogle Scholar
  27. Burt RK, Loh Y, Pearce W et al (2008) Clinical applications of blood-derived and marrow-derived stem cells for non-malignant diseases. JAMA 299:925–936PubMedCrossRefGoogle Scholar
  28. Buzzetti R, Cernea S, Petrone A et al (2011) C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277: an exploratory study. Diabetes 60:3067–3072PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cabrera O, Berman DM, Kenyon NS et al (2006) The unique cyto-architecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339PubMedPubMedCentralCrossRefGoogle Scholar
  30. Calne R (2005) Cell transplantation for diabetes. Philos Trans R Soc Lond B Biol Sci 360:1769–1774PubMedPubMedCentralCrossRefGoogle Scholar
  31. Canadian Diabetes Association (2003) Clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes 27(suppl 2):S21–S23Google Scholar
  32. Casteilla L, Planat-Benard V, Cousin B et al (2005) Plasticity of adipose tissue: a promising therapeutic avenue in the treatment of cardiovascular and blood diseases. Arch Mal Coeur Vaiss 98:922–926PubMedGoogle Scholar
  33. Cefalu WT (2012) American diabetes association-European association for the study of diabetes position statement: due diligence was conducted. Diabetes Care 35:1201–1203PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chhabra P, Brayman KL (2013) Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med 2:328–336PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439:216–219PubMedCrossRefGoogle Scholar
  36. Ciancio G, Burke GW, Viciana AL et al (1996) Destructive allograft fungal arteritis following simultaneous pancreas-kidney transplantation. Transplantation 61:1172–1175PubMedCrossRefGoogle Scholar
  37. Comparison of clinical features between (juvenile) type 1 diabetes, type 2 diabetes and LADA (2006) Islets of HopeGoogle Scholar
  38. Concanon P, Rich SS, Nepom GT (2009) Genetics of type 1A diabetes. N Engl J Med 360:1646–1654CrossRefGoogle Scholar
  39. Cooper JD, Smyth DJ, Walker NM et al (2011) Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes 60:1624–1631PubMedPubMedCentralCrossRefGoogle Scholar
  40. Copland PS (2004) The roman catholic church and embryonic stem cells. J Med Ethics 30:607–608PubMedPubMedCentralCrossRefGoogle Scholar
  41. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541PubMedCrossRefGoogle Scholar
  42. D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401PubMedCrossRefGoogle Scholar
  43. Dabelea D (2009) The accelerating epidemic of childhood diabetes. Lancet 373:1999–2000PubMedCrossRefGoogle Scholar
  44. Daneman D (2006) Type 1 diabetes. Lancet 367:847–858PubMedCrossRefGoogle Scholar
  45. Davani B, Ariely S, Ikonomou L, Oron Y, Gershengorn MC (2009) Human islet-derived precursor cells can cycle between epithelial clusters and mesenchymal phenotypes. J Cell Mol Med 13:2570–2581PubMedCrossRefGoogle Scholar
  46. Dazzi F, Marelli-Berg FM (2008) Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol 38:1479–1482PubMedCrossRefGoogle Scholar
  47. De Meyer J (1904) Sur la signification physiologique de la secretion interne du pancreas. Zbl Physiol 18:S826Google Scholar
  48. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448PubMedCrossRefGoogle Scholar
  49. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:167–1677CrossRefGoogle Scholar
  50. Domínguez-Bendala J, Klein D, Ribeiro M, Ricordi C, Inverardi L, Pastori R, Edlund H (2005) TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro. Diabetes 54:720–726PubMedCrossRefGoogle Scholar
  51. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  52. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46PubMedCrossRefGoogle Scholar
  53. Drjer K (1992) The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes Metab Rev 8:259–285CrossRefGoogle Scholar
  54. Eaton RP, Allen RC, Schade DS, Erickson KM, Standefer J (1980) Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab 51:520–528PubMedCrossRefGoogle Scholar
  55. Eich T, Eriksson O, Lundgren T (2007) Nordic network for clinical islet transplantation. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N Engl J Med 356:2754–2755PubMedCrossRefGoogle Scholar
  56. Ende N, Chen R, Reddi AS (2004) Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 325:665–669PubMedCrossRefGoogle Scholar
  57. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  58. Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturityonset diabetes of the young. N Engl J Med 345:971–980PubMedCrossRefGoogle Scholar
  59. Fandrich F, Ungefroren H (2010) Customized cell-based treatment options to combat autoimmunity and restore beta-cell function in type 1 diabetes mellitus: current protocols and future perspectives. Adv Exp Med Biol 654:641–665PubMedCrossRefGoogle Scholar
  60. Favaro E, Carpanetto A, Lamorte S, Fusco A, Caorsi C, Deregibus MC, Bruno S, Amoroso A, Giovarelli M, Porta M, Perin PC, Tetta C, Camussi G, Zanone MM (2014) Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia 57:1664–1673PubMedCrossRefGoogle Scholar
  61. Fiorina P, Jurewicz M, Augello A et al (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fiorina P, Voltarelli J, Zavazava N (2011) Immunological applications of stem cells in type 1 diabetes. Endocr Rev 32:725–754PubMedPubMedCentralCrossRefGoogle Scholar
  63. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morpholog 16:381–390Google Scholar
  64. Fuchs E (2009) Finding one’s niche in the skin. Cell Stem Cell 2009(4):499–502CrossRefGoogle Scholar
  65. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gale EA (2005) Type 1 diabetes in the young: the harvest of sorrow goes on. Diabetologia 48:1435–1438PubMedCrossRefGoogle Scholar
  67. Gibly RF, Graham JG, Luo X, Lowe WL Jr, Hering BJ, Shea LD (2011) Advancing islet transplantation: from engraftment to the immune response. Diabetologia 54:2494–2505PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gluckman E, Broxmeyer HA, Auerbach AD et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178PubMedCrossRefGoogle Scholar
  69. Greenbaum C, Atkinson MA (2011) Persistence is the twin sister of excellence: an important lesson for attempts to prevent and reverse type 1 diabetes. Diabetes 60:693–694PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gruessner AC, Sutherland DE (2001) Report from the international pancreas transplant registry 2000. Transplant Proc 33:1643–1646PubMedCrossRefGoogle Scholar
  71. Gruessner AC, Sutherland DER (2005) Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004. Clin Transpl 19:433–455CrossRefGoogle Scholar
  72. Gruessner RW, Burke GW, Stratta R et al (1996) Multicenter analysis of the first experience with FK506 for induction and rescue therapy after pancreas transplantation. Transplantation 61:261–273PubMedCrossRefGoogle Scholar
  73. Gruss P (2003) Human ES cells in Europe. Science 301:1017PubMedCrossRefGoogle Scholar
  74. Halban PA (2004) Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat Cell Biol 6:1021–1025PubMedCrossRefGoogle Scholar
  75. Haller MJ, Wasserfall CH, McGrail KM et al (2009) Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care 32:2041–2046PubMedPubMedCentralCrossRefGoogle Scholar
  76. Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F (2000) Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol 166:103–109PubMedCrossRefGoogle Scholar
  77. Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O, Houkin K, Matsunaga T, Niitsu Y (2005) Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 96:149–156PubMedCrossRefGoogle Scholar
  78. Hansson M, Tonning A, Frandsen U et al (2004) Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53:2603–2609PubMedCrossRefGoogle Scholar
  79. Harjutsalo V, Sjoberg L, Tuomilehto J (2008) Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371:1777–1782PubMedCrossRefGoogle Scholar
  80. Hoogduijn MJ, Popp F, Verbeek R et al (2010) The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol 10:1496–1500PubMedCrossRefGoogle Scholar
  81. Hori Y, Gu X, Xie X, Kim SK (2005) Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med 2:e103PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hou SX, Singh SR (2008) Germline stem cells. Springer, New York, p 450CrossRefGoogle Scholar
  83. Houard N, Rousseau GG, Lemaigre FP (2003) HNF-6-independent differentiation of mouse embryonic stem cells into insulin producing cells. Diabetologia 46:378–385PubMedCrossRefGoogle Scholar
  84. Izadpanah R, Trygg C, Patel B et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jahansouz C, Kumer SC, Ellenbogen M, Brayman KL (2011) Evolution of beta-cell replacement therapy in diabetes mellitus: pancreas transplantation. Diabetes Technol Ther 13:395–418PubMedCrossRefGoogle Scholar
  86. Jahr H, Bretzel RG (2003) Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc 35:2140–2141PubMedCrossRefGoogle Scholar
  87. Johansson H, Lukinius A, Moberg L et al (2005) Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 54:1755–1762PubMedCrossRefGoogle Scholar
  88. Jurewicz M, Yang S, Augello A et al (2010) Congenic mesenchymal stem cell therapy reversesehyperglycemia in experimental type 1 diabetes. Diabetes 59:3139–3147PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kahn CR (1994) Insulin action, diabetogene and the cause of type II diabetes: banting lecture. Diabetes 43:1066–1084PubMedCrossRefGoogle Scholar
  90. Kahn HS, Morgan TM, Case LD et al (2009) Association of type 1 diabetes with month of birthamong US youth: the SEARCH for diabetes in youth study. Diabetes Care 32:2010–2015PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kang EM, Zickler PP, Burns S et al (2005) Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established. Exp Hematol 33(6):699–705PubMedCrossRefGoogle Scholar
  92. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25:2837–2844PubMedCrossRefGoogle Scholar
  93. Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B (2000) Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49:1325–1333PubMedCrossRefGoogle Scholar
  94. Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC (1967) Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 61:827–837PubMedGoogle Scholar
  95. Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301PubMedCrossRefGoogle Scholar
  96. Kilk K, Magzoub M, Pooga M, Eriksson LE, Langel U, Gräslund A (2001) Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetratin peptide. Bioconjug Chem 12:911–916PubMedCrossRefGoogle Scholar
  97. Knip M, Virtanen SM, Akerblom HK (2010) Infant feeding and the risk of type 1 diabetes. Am J Clin Nutr 91:1506–1513CrossRefGoogle Scholar
  98. Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452PubMedCrossRefGoogle Scholar
  99. Kubo A, Shinozaki K, Shannon JM et al (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:1651–1662PubMedCrossRefGoogle Scholar
  100. Kucia M, Halasa M, Wysoczynski M et al (2006) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood–preliminary report. Leukemia 21:297–303PubMedCrossRefGoogle Scholar
  101. Kukko M, Kimpimaki T, Korhonen S et al (2005) Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk of type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 90:2712–2717PubMedCrossRefGoogle Scholar
  102. Lakey JR, Burridge PW, Shapiro AM (2003) Technical aspects of islet preparation and transplantation. Transpl Int: Off J Eur Soc Organ Transplant 16:613–632CrossRefGoogle Scholar
  103. Landry DW, Zucker HA (2004) Embryonic death and the creation of human embryonic stem cells. J Clin Invest 114:1184–1186PubMedPubMedCentralCrossRefGoogle Scholar
  104. Langerhans P (1869) Beiträgezurmikroskopischen Anatomie der Bauchspeicheldrüse. Inaug.-Diss, BerlinGoogle Scholar
  105. Lee RH, Seo MJ, Reger RL et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443PubMedPubMedCentralCrossRefGoogle Scholar
  106. Leibiger IB, Berggren PO (2008) Insulin signaling in the pancreatic β-cell. Annu Rev Nutr 28:233–251PubMedCrossRefGoogle Scholar
  107. Leroith D, Taylor SI, Olefky JM (eds) (2003) Diabetes mellitus. A fundamental and clinical text, 3rd edn. Lippincott, Williams Wilkins, PhiladelphiaGoogle Scholar
  108. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X (2007) Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211:36–44PubMedCrossRefGoogle Scholar
  109. Liu Z, Sall A, Yang D (2008) MicroRNA: an emerging therapeutic target and intervention tool. Int J Mol Sci 9:978–999PubMedPubMedCentralCrossRefGoogle Scholar
  110. Liu X, Wang Y, Li Y, Pei X (2013) Research status and prospect of stem cells in the treatment of diabetes mellitus. Sci China Life Sci 56:306–312PubMedCrossRefGoogle Scholar
  111. Lu LL, Liu YJ, Yang SG et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026PubMedGoogle Scholar
  112. Ludvigsson J, Krisky D, Casas R et al (2012) GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med 366:433–442PubMedCrossRefGoogle Scholar
  113. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394PubMedCrossRefGoogle Scholar
  114. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39:481–497CrossRefGoogle Scholar
  115. MacCracken J, Hoel D (1997) From ants to analogues: puzzles and promises in diabetes management. Postgrad Med 101(4):138–140. commentariesPubMedCrossRefGoogle Scholar
  116. Maclaren N, Atkinson M (1992) Is insulin-dependent diabetes mellitus environmentally induced? N Engl J Med 327:348–349PubMedCrossRefGoogle Scholar
  117. Madec AM, Mallone R, Afonso G et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52:1391–1399PubMedCrossRefGoogle Scholar
  118. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638PubMedPubMedCentralCrossRefGoogle Scholar
  119. Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S (2012) Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med 10:243PubMedPubMedCentralCrossRefGoogle Scholar
  120. Matsumoto S, Okitsu T, Iwanaga Y et al (2005) Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet 365:1642–1644PubMedCrossRefGoogle Scholar
  121. Matsumoto S, Okitsu T, Iwanaga Y et al (2006) Follow-up study of the first successful living donor islet transplantation. Transplantation 82:1629–1633PubMedCrossRefGoogle Scholar
  122. McGuckin CP, Forraz N (2008) Potential for access to embryonic-like cells from human umbilical cord blood. Cell Prolif 41:31–40PubMedCrossRefGoogle Scholar
  123. Meier JJ, Butler PC (2005) Insulin secretion. In: Endocrinology. Elsevier Saunders, PhiladelphiaGoogle Scholar
  124. Meirelles Lda S, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci 14:4281–4298CrossRefGoogle Scholar
  125. Meissner A, Jaenisch R (2006) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439:212–215PubMedCrossRefGoogle Scholar
  126. Mering JV, Minkowski O (1889) Diabetes mellitus nach Pankreasexstirpation. Zschrklin Med 14:404–423Google Scholar
  127. Mineo D, Ciancio G, Burke GW, Alejandro R, Ricordi C (2010) Islet and pancreas transplantation. In: Efrat S (ed) Stem cell therapy for diabetes. Stem cell biology and regenerative medicine. Humana Press, New York, pp 41–83. doi: 10.1007/978–1–60761-366-4_2 Google Scholar
  128. Mishra PK, Tyagi N, Kumar M, Tyagi SC (2009) MicroRNAs as a therapeutic target for cardiovascular disease. J Cell Mol Med 13:778–789PubMedPubMedCentralCrossRefGoogle Scholar
  129. Moberg L, Johansson H, Lukinius A et al (2002) Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360:2039–2045PubMedCrossRefGoogle Scholar
  130. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147:47–54PubMedCrossRefGoogle Scholar
  131. Moltchanova EV, Schreier N, Lammi N, Karvonen M (2009) Seasonal variation of diagnosis of type 1 diabetes mellitus in children worldwide. Diabet Med 26:673–678PubMedCrossRefGoogle Scholar
  132. Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetics classification of monogenicβ–cell diabetes. Nat Clin Pract Endocrinol Metab 4:200PubMedCrossRefGoogle Scholar
  133. Nilsson B, Ekdahl KN, Korsgren O (2011) Control of instant blood-mediated inflammatory reaction to improve islets of Langerhans engraftment. Curr Opin Organ Transplant 16:620–626PubMedCrossRefGoogle Scholar
  134. Noguchi H, Matsumoto S (2006) Protein transduction technology offers a novel therapeutic approach for diabetes. J Hepato-Biliary-Pancreat Surg 13:306–313CrossRefGoogle Scholar
  135. Noguchi H, Kaneto H, Weir GC, Bonner-Weir S (2003) PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 52:1732–1737PubMedCrossRefGoogle Scholar
  136. Noguchi H, Bonner-Weir S, Wei FY, Matsushita M, Matsumoto S (2005) BETA2/neuro D protein can be transduced into cells due to an arginine- and lysinerich sequence. Diabetes 54:2859–2866PubMedCrossRefGoogle Scholar
  137. Oakley J (2002) Democracy, embryonic stem cell research, and the roman catholic church. Med Ethics 28:22856CrossRefGoogle Scholar
  138. Oedayrajsingh-Varma M, van Ham S, Knippenberg M et al (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8:166–177PubMedCrossRefGoogle Scholar
  139. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Investig 84:607–617PubMedCrossRefGoogle Scholar
  140. Ohneda K, Ee H, German M (2000) Regulation of insulin gene transcription. Semin Cell Dev Biol 11:227–233PubMedCrossRefGoogle Scholar
  141. Okita K, Yamakawa T, Matsumura Y et al (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466PubMedCrossRefGoogle Scholar
  142. Orban T, Bundy B, Becker DJ et al (2011) Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378:412–419PubMedPubMedCentralCrossRefGoogle Scholar
  143. Orlando G, Gianello P, Salvatori M, Stratta RJ, Soker S, Ricordi C et al (2014) Cell replacement strategies aimed at reconstitution of the beta-cell compartment in type 1 diabetes. Diabetes 63:1433–1444PubMedCrossRefGoogle Scholar
  144. Ostman J, Lonnberg G, Arnqvist HJ et al (2008) Gender differences and temporal variation in the incidence of type 1 diabetes: results of 8012 cases in the nationwide diabetes incidence study in Sweden 1983–2002. J Intern Med 263:386–394PubMedCrossRefGoogle Scholar
  145. Pap E, Pállinger E, Falus A (2011) The role of membrane vesicles in tumorigenesis. Crit Rev Oncol Hematol 79:213–223PubMedCrossRefGoogle Scholar
  146. Passweg J, Tyndall A (2007) Autologous stem cell transplantation in autoimmune diseases. Semin Hematol 44:278–285PubMedCrossRefGoogle Scholar
  147. Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G, EURODIAB Study Group (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033PubMedCrossRefGoogle Scholar
  148. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152PubMedCrossRefGoogle Scholar
  149. Pickup JC, Willium G (2003) The history of diabetes mellitus, Textbook of diabetes, vol 1, 3rd edn. Blackwell Science Limited, OxfordGoogle Scholar
  150. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 29:351–366PubMedCrossRefGoogle Scholar
  151. Polonsky KS, Pugh W, Jaspan JB, Cohen DM, Karrison T, Tager HS, Rubenstein AH (1984) C-peptide and insulin secretion. Relationship between peripheral concentrations of C-peptide and insulin and their secretion rates in the dog. J Clin Invest 74:1821–1829PubMedPubMedCentralCrossRefGoogle Scholar
  152. Posselt AM, Szot GL, Frassetto LA, Masharani U, Tavakol M et al (2010) Islet transplantation in type 1 diabetic patients using calcineurin inhibitor-free immunosuppressive protocols based on T-cell adhesion or costimulation blockade. Transplantation 90:1595–1601PubMedPubMedCentralCrossRefGoogle Scholar
  153. Pozzilli P (2012) Type 1 diabetes mellitus in 2011: heterogeneity of T1DM raises questions for therapy. Nat Rev Endocrinol 8:78–80CrossRefGoogle Scholar
  154. Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18:47–54PubMedCrossRefGoogle Scholar
  155. Pybus FC (1924) Notes on suprarenal and pancreatic grafting. Lancet 204:550–551CrossRefGoogle Scholar
  156. Rackham CL, Chagastelles PC, Nardi NB et al (2011) Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia 54:1127–1135PubMedCrossRefGoogle Scholar
  157. Rahier J, Goebbels RM, Henquin JC (1983) Cellular composition of the human diabetic pancreas. Diabetologia 24:366–371PubMedCrossRefGoogle Scholar
  158. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6:278–282PubMedCrossRefGoogle Scholar
  159. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856PubMedCrossRefGoogle Scholar
  160. Ricordi C (ed) (1992) 1892–1992. One century of transplantation for diabetes: pancreatic islet cell. Transplantation. R.G. Landes Company, Austin, p 291Google Scholar
  161. Ricordi C, Lacy PE, Scharp DW (1989) Automated islet isolation from human pancreas. Diabetes 38:140–142PubMedCrossRefGoogle Scholar
  162. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208PubMedPubMedCentralCrossRefGoogle Scholar
  163. Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069PubMedCrossRefGoogle Scholar
  164. Scharp DW, Lacy PE, Santiago JV et al (1990) Insulin independence after islet transplantation into type I diabetic patient. Diabetes 39:515–518PubMedCrossRefGoogle Scholar
  165. Scheres B (2007) Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8:345–354PubMedCrossRefGoogle Scholar
  166. Schloot NC, Meierhoff G, Lengyel C et al (2007) Effect of heat shock protein peptide DiaPep277 on beta-cell function in paediatric and adult patients with recent-onset diabetes mellitus type 1: two prospective, randomized, double-blind phase II trials. Diabetes Metab Res Rev 23:276–285PubMedCrossRefGoogle Scholar
  167. Seaberg RM, Smukler SR, Kieffer TJ et al (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22:1115–1124PubMedCrossRefGoogle Scholar
  168. Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J (2004) Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22:265–274PubMedCrossRefGoogle Scholar
  169. Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238PubMedCrossRefGoogle Scholar
  170. Shapiro AM, Ricordi C, Hering BJ et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330PubMedCrossRefGoogle Scholar
  171. Sherry N, Hagopian W, Ludvigsson J et al (2011) Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from randomised, placebo-controlled trial. Lancet 378:487–497PubMedPubMedCentralCrossRefGoogle Scholar
  172. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–336CrossRefGoogle Scholar
  173. Sims E, Evans-Molina C (2012) Stem cells as a tool to improve outcomes of islet transplantation. J Transplant 2012:736491PubMedPubMedCentralCrossRefGoogle Scholar
  174. Singh SR, Hou SX (2008) Lessons learned about adult kidney stem cells from the malpighian tubules of Drosophila. J Am Soc Nephrol 19:660–666PubMedCrossRefGoogle Scholar
  175. Singh SR, Hou SX (2009) Multipotent stem cells in the Malpighian tubules of adult Drosophila melanogaster. J Exp Biol 212:413–423PubMedPubMedCentralCrossRefGoogle Scholar
  176. Singh SR, Liu W, Hou SX (2007) The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191–203PubMedPubMedCentralCrossRefGoogle Scholar
  177. Soria B, Roche E, Berná G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin induced diabetic mice. Diabetes 49:157–162PubMedCrossRefGoogle Scholar
  178. Sosenko JM, Skyler JS, Mahon J et al (2012) The application of the diabetes prevention trial-type 1 risk score for identifying a preclinical state of type 1 diabetes. Diabetes Care 35:1552–1555PubMedPubMedCentralCrossRefGoogle Scholar
  179. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583PubMedCrossRefGoogle Scholar
  180. Sprent J, Kishimoto H (2001) The thymus and central tolerance. Philos Trans R Soc Lond B Biol Sci 356:609–616PubMedPubMedCentralCrossRefGoogle Scholar
  181. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949PubMedPubMedCentralCrossRefGoogle Scholar
  182. Staeva TP, Chatenoud L, Insel R, Atkinson MA (2013) Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 62:9–17PubMedCrossRefGoogle Scholar
  183. Starzl TE (2001) The “privileged” liver and hepatic tolerogenicity. Liver Transpl 7:918–920PubMedPubMedCentralCrossRefGoogle Scholar
  184. Stefan Y, Orci L, Malaisse-Lagae F, Perrelet A, Patel Y, Unger RH (1982) Quantitation of endocrine cell content in the pancreas of non-diabetic and diabetic humans. Diabetes 31:694–700PubMedCrossRefGoogle Scholar
  185. Stene LC, Rewers M (2012) Immunology in the clinic review series; focus on type 1 diabetes and viruses: the enterovirus link to type 1 diabetes: critical review of human studies. Clin Exp Immunol 168:12–23PubMedPubMedCentralCrossRefGoogle Scholar
  186. Subramanian S, Trence DL (2007) Immunosuppressive agents: effects on glucose and lipid metabolism. Endocrinol Metab Clin N Am 36:891–905CrossRefGoogle Scholar
  187. Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L et al (2007) Differentiation of bone marrow derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J 120:771–776PubMedGoogle Scholar
  188. Suzuki A, Nakauchi H, Taniguchi H (2004) Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53:2143–2152PubMedCrossRefGoogle Scholar
  189. Svoren BM, Volkening LK, Wood JR, Laffel LM (2009) Significant vitamin D deficiency in youth with type 1 diabetes mellitus. J Pediatr 154:132–134PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sykes M, Nikolic B (2005) Treatment of severe autoimmune disease by stem-cell transplantation. Nature 435:620–627PubMedCrossRefGoogle Scholar
  191. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  192. Tariq M, Masoud MS, Mehmood A, Khan SN, Riazuddin S (2013) Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats. J Transl Med 11:115PubMedPubMedCentralCrossRefGoogle Scholar
  193. Thakkar UG, Trivedi HL, Vanikar AV, Dave SD (2015) Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy 17:940–947PubMedCrossRefGoogle Scholar
  194. The American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32:S62–S67CrossRefGoogle Scholar
  195. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986Google Scholar
  196. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593PubMedCrossRefGoogle Scholar
  197. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  198. Thunander M, Petersson C, Jonzon K et al (2008) Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg. Sweden Diabetes Res Clin Pract 82:247–255PubMedCrossRefGoogle Scholar
  199. Trivedi HL, Vanikar AV, Thakker U et al (2008) Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc 40:1135–1139PubMedCrossRefGoogle Scholar
  200. Ullrich A, Shrine J, Chirgwin J (1977) Rat insulin genes construction of plasmids containing the coding sequence. Science 196:1313–1319PubMedCrossRefGoogle Scholar
  201. Urban VS, Kiss J, Kovacs J et al (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253PubMedCrossRefGoogle Scholar
  202. Valadi H, Ekström K, Bossiois A, Sjörstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNA and mirco RNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  203. Vanikar AV, Dave SD, Thakkar UG, Trivedi HL (2010) Co-transplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int 2010 :5. doi: 10.4061/2010/582382Article ID 582382CrossRefGoogle Scholar
  204. Vanikar AV, Trivedi HL, Patel RD, Kanodia KV, Modi PR, Shah VR (2012) Allogenic hematopoietic stem cell transplantation in pemphigus vulgaris: a single-center experience. Indian J Dermatol 57:9–11PubMedPubMedCentralCrossRefGoogle Scholar
  205. Vantyghem MC, Marcelli-Tourvielle S, Pattou F et al (2007) Effects of non-steroid immunosuppressive drugs on insulin secretion in transplantation. Ann Endocrinol 68:21–27CrossRefGoogle Scholar
  206. Vendrame F, Pileggi A, Laughlin E et al (2010) Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes 59:947–957PubMedPubMedCentralCrossRefGoogle Scholar
  207. Voltarelli JC, Couri CE, Rodrigues MC et al (2011) Stem cell therapies for type 1 diabetes mellitus. Indian J Exp Biol 49:395–400PubMedGoogle Scholar
  208. Walter M, Philotheou A, Bonnici F, Ziegler AG, Jimenez R (2009) No effect of the altered peptide ligand NBI-6024 on beta-cell residual function and insulin needs in new-onset type 1 diabetes. Diabetes Care 32:2036–2040PubMedPubMedCentralCrossRefGoogle Scholar
  209. Wang V, Wu W (2009) MicroRNA-based therapeutics for cancer. Bio Drugs 23:15–23Google Scholar
  210. Wang RN, Kloppel G, Bouwens L (1995) Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38:1405–1411PubMedCrossRefGoogle Scholar
  211. Wang HS, Shyu JF, Shen WS et al (2011) Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant 20:455–466PubMedCrossRefGoogle Scholar
  212. Watson R (2003) Euro MPs threaten UK stem cell research. BMJ 326:838PubMedPubMedCentralCrossRefGoogle Scholar
  213. Webb MA, Dennison AR, James RF (2012) The potential benefit of non-purified islets preparations for islet transplantation. Biotechnol Genet Eng Rev 28:101–114PubMedCrossRefGoogle Scholar
  214. Wherrett DK, Bundy B, Becker DJ et al (2011) Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378:319–327PubMedPubMedCentralCrossRefGoogle Scholar
  215. Wilkin TJ (2008) Diabetes 1 and 2, or one and the same? Progress with the accelerator hypothesis. Pediatr Diabetes 9:23–32PubMedCrossRefGoogle Scholar
  216. Winkler C, Krumsiek J, Lempainen J et al (2012) A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun 13:549–555PubMedCrossRefGoogle Scholar
  217. World Health Organisation (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. WHO/NCD/NCS/99.2. Geneva. Ref Type: ReportGoogle Scholar
  218. Xu J, Lu Y, Ding F, Zhan X, Zhu M, Wang Z (2007) Reversal of diabetes in mice by intrahepatic injection of bone-derived GFP murine mesenchymal stem cells infected with the recombinant retrovirus-carrying human insulin gene. World J Surg 31:1872–1882PubMedCrossRefGoogle Scholar
  219. Xu X, D’Hoker J, Stange G et al (2008) β-cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207PubMedCrossRefGoogle Scholar
  220. Yamashita YM (2009) Regulation of asymmetric stem cell division: spindle orientation and the centrosome. Front Biosci 14:3003–3011CrossRefGoogle Scholar
  221. Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA (2006) Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24:2582–2591PubMedCrossRefGoogle Scholar
  222. Yechoor V, Liu V, Espiritu C et al (2009) Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 16:358–373PubMedPubMedCentralCrossRefGoogle Scholar
  223. Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:35CrossRefGoogle Scholar
  224. Yoon JW, Jun HS (2005) Autoimmune destruction of pancreatic β-cells. Am J Ther 12:580–591PubMedCrossRefGoogle Scholar
  225. Zaret KS, Grompe M (2008) Generation and regeneration of cells of the liver and pancreas. Science 322:1490–1494PubMedPubMedCentralCrossRefGoogle Scholar
  226. Zhang J, Shehabeldin A, da Cruz LA, Butler J, Somani AK, McGavin M et al (1999) Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J Exp Med 190:1329–1342PubMedPubMedCentralCrossRefGoogle Scholar
  227. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Umang G. Thakkar
    • 1
  • Aruna V. Vanikar
    • 1
    • 2
  • Hargovind L. Trivedi
    • 1
    • 3
  1. 1.Department of Regenerative Medicine and Stem Cell Therapy and Department of PediatricsG.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC)- Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS)AhmedabadIndia
  2. 2.Department of Pathology, Laboratory Medicine, Transfusion Services and ImmunohematologyG.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC)- Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS)GujaratIndia
  3. 3.Department of Nephrology and Transplantation MedicineG.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre (IKDRC)- Dr. H.L. Trivedi Institute of Transplantation Sciences (ITS)GujaratIndia

Personalised recommendations