Stem Cell Applications in Rejuvenation

Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

The World Health Organization estimates that by 2050 nearly 25% of the world's population will be over 60 years of age. However, increasing lifespan doesn’t necessary increase health quality. Ageing is considered as the biggest risk factor for a range of diseases, including cancer, Alzheimer, cardiovascular and atherosclerosis. For this reasons it is imperative to gain a deep understanding of the impact of aging on the regulation of biological systems and to find therapeutic strategies for healthy ageing. The aim of this chapter is to investigate the factors involved in ageing and the rejuvenation potentialities of stem cells as affected by ageing. Also highlight the potential of therapeutic remedy to regenerate senescent tissues and reduce inflammation level associated with ageing.

The progress of biomedical science and public heath interventions, together with improvements in water and food quality and the prevention of many infectious diseases, has resulted in a remarkable increasing survival, leading to demographic shift in favour of older people. Advanced age in humans is considered as the largest risk factor for a range of diseases, including cancer, Alzheimer’s disease (AD), and cardiovascular and atherosclerosis syndromes. For this reason, it is imperative to gain a deep understanding of the impact of ageing on the regulation of biological systems and to find therapeutic strategies to keep people healthy for longer. Although ageing is complicated and variable, with diverse kinds of damage and pathology accumulating in a way that varies between both different body tissues and individual organisms, the process has proved to be malleable. Several factors are involved, and in particular, stem cells seem to be extremely important either as affected by ageing or as therapeutic remedy to regenerate ageing tissues and reduce inflammation level associated with ageing. This chapter will introduce about applications of stem cell therapies in rejuvenation.

Keywords

Regenerative medicine - Regenerative surgery - Stem cell therapy - Cellular senescence - Inflammation - Inflammaging - Telomere attrition - Epigenetic -PNEI - Nutrition - Immunomodulation 

References

  1. Agarwal S et al (2010) Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464:292–296PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alt E et al (2010) Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. Int J Cardiol 144(1):26–35PubMedCrossRefGoogle Scholar
  3. Amit M et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278PubMedCrossRefGoogle Scholar
  4. Andrew AS et al (2006) Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect 114:1193–1198PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anversa P et al (2005) Myocardial aging a stem cell problem. Basic Res Cardiol 100:482–493PubMedCrossRefGoogle Scholar
  6. Arsenijevic Y et al (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 170(1):48–62PubMedCrossRefGoogle Scholar
  7. Auley MT, Mooney K (2015) Lipid metabolism and aging. Comput Struct Biotechnol J 13:38–46CrossRefGoogle Scholar
  8. Bachoud-Lévi AC et al (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309PubMedCrossRefGoogle Scholar
  9. Baker DJ et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  10. Banerjee M et al (2008) DNA repair deficiency leads to susceptibility to develop arsenic-induced premalignant skin lesions. Int J Cancer 123:283–287PubMedCrossRefGoogle Scholar
  11. Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600PubMedCrossRefGoogle Scholar
  12. Bartholomew et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48PubMedCrossRefGoogle Scholar
  13. Bartunek J et al (2009) Delivery of biologics in cardio- vascular regenerative medicine. Clin Pharmacol Ther 85(5):548–552PubMedCrossRefGoogle Scholar
  14. Beltrami AP et al (2011) At the stem of youth and health. Pharmacol Ther 129:3–20PubMedCrossRefGoogle Scholar
  15. Bernhard D et al (2007) Cigarette smoke—an aging accelerator? Exp Gerontol 42:160–165PubMedCrossRefGoogle Scholar
  16. Besedovsky H et al (1975) Changes in blood hormone levels during the immune response. Proc Soc Exp Biol Med 150(2):466–470PubMedCrossRefGoogle Scholar
  17. Bitomsky N, Hofmann TG (2009) Apoptosis and autophagy: regulation of apoptosis by DNA damage signalling - roles of p53, p73 and HIPK2. FEBS J 276(21):6074–6083PubMedCrossRefGoogle Scholar
  18. Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 9(4):683–688. Epub 2010 Mar 2PubMedCrossRefGoogle Scholar
  19. Blalock JE (1994) The syntax of immune-neuroendocrine communication. Immunol Today 15(11):504–511PubMedCrossRefGoogle Scholar
  20. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649PubMedCrossRefGoogle Scholar
  21. Bondolfi L, Ermini F, Long JM, Ingram DK, Jucker M (2004) Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 25:333–340PubMedCrossRefGoogle Scholar
  22. Bonnema DD et al (2007) Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail 13:530–540PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bouchard J et al (2015) Ageing and brain rejuvenation as systemic events. J Neurochem 132:5–19PubMedCrossRefGoogle Scholar
  24. Bremmer MA et al (2008) Inflammatory markers in late-life depression: results from a population-based study. J Affect Disord 106:249–255PubMedCrossRefGoogle Scholar
  25. Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11(8):567–578PubMedCrossRefGoogle Scholar
  26. Butler RN et al (2008) New model of health promotion and disease prevention for the 21st century. BMJ 337:a399PubMedCrossRefGoogle Scholar
  27. Canela A et al (2007) High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A 104(13):5300–5305PubMedPubMedCentralCrossRefGoogle Scholar
  28. Capewell S et al (2008) Modelling the UK burden of cardiovascular disease to 2020 a research report for the cardio & vascular coalition and the British heart foundation. British Heart: FoundationGoogle Scholar
  29. Carroll KK et al (1992) Dolichol: function, metabolism, and accumulation in human tissues. Biochem Cell Biol 70:382–384PubMedCrossRefGoogle Scholar
  30. Carroll BJ et al (2012) Pathophysiology of hypercortisolism in depression: pituitary and adrenal responses to low glucocorticoid feedback. Acta Psychiatr Scand 125(6):478–491PubMedCrossRefGoogle Scholar
  31. Cassidy A et al. (2010) Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr 91(5):1273–1280PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cassis LA et al (2008) Local adipose tissue renin-angiotensin system. Curr Hypertens Rep 10(2):93–98PubMedPubMedCentralCrossRefGoogle Scholar
  33. Castilho RM et al (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5(3):279–289PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cedar S, Minger SR (2008) Human embryonic stem cells a model for human ageing. Exp Gerontol 43:1005–1008PubMedCrossRefGoogle Scholar
  35. Cerletti M et al (2012) Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10:515–519PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chakkalakal JV et al (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360PubMedPubMedCentralCrossRefGoogle Scholar
  37. Charles-de-Sá L et al (2015) Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells. PRS 135:6Google Scholar
  38. Chen C et al (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chhabra P, Brayman KL (2009) The use of stem cells in kidney disease. Curr Opin Organ Transplant 14:72–78PubMedCrossRefGoogle Scholar
  40. Chimenti C et al (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93(7):604–613PubMedCrossRefGoogle Scholar
  41. Clelland CD et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213PubMedPubMedCentralCrossRefGoogle Scholar
  42. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(Suppl):108S–120SPubMedCrossRefGoogle Scholar
  43. Collado M et al (2007) Cellular senescence in cancer and aging. Cell 130(2):223233Google Scholar
  44. Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579PubMedCrossRefGoogle Scholar
  45. Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410PubMedCrossRefGoogle Scholar
  46. Conboy IM, Rando TA (2012) Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11(12):2260–2267PubMedPubMedCentralCrossRefGoogle Scholar
  47. Conboy IM et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764PubMedCrossRefGoogle Scholar
  48. De Ugarte DA et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–1092003PubMedCrossRefGoogle Scholar
  49. DeMarini DM (2004) Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat Res 567:447–474PubMedCrossRefGoogle Scholar
  50. Deshpande DM et al (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 60:32–44PubMedCrossRefGoogle Scholar
  51. Drela N et al (2004) Moderate exercise may attenuate some aspects of immunosenescence. BMC Geriatr 4:8PubMedPubMedCentralCrossRefGoogle Scholar
  52. Epel ES et al (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101:17312–17315PubMedPubMedCentralCrossRefGoogle Scholar
  53. Feng Q et al (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28:704–712PubMedCrossRefGoogle Scholar
  54. Flegal KM et al (2007) Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298:2028–2037PubMedCrossRefGoogle Scholar
  55. Flores I, Blasco MA (2010) The role of telomeres and telomerase in stem cell aging. FEBS Lett 584(17):3826–38302010 Sep 10PubMedCrossRefGoogle Scholar
  56. Fonseca Costa SS (2015) Impact of the circadian clock on the ageing process. Front Neurol 6:43Google Scholar
  57. Franceschi C et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  58. Freed CR et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719PubMedCrossRefGoogle Scholar
  59. Fries JF et al (2011) Compression of morbidity 1980-2011: a focused review of paradigms and progress. J Aging Res 2011:261702PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gameiro C, Romao F (2010) Changes in the immune system during menopause and aging. Front Biosci E2:1299–1303CrossRefGoogle Scholar
  61. Geiger H et al (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389PubMedCrossRefGoogle Scholar
  62. Gentile P et al (2012) Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl Med 1:230–236PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gonos ES et al (1998) Cloning and identification of genes that associate with mammalian replicative senescence. Exp Cell Res 240(1):66–74PubMedCrossRefGoogle Scholar
  64. Gordon D et al (2008) Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci Lett 448:71–73PubMedPubMedCentralCrossRefGoogle Scholar
  65. Grady D, Ernster V (1992) Does cigarette smoking make you ugly and old? Am J Epidemiol 135:839–842PubMedCrossRefGoogle Scholar
  66. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112PubMedPubMedCentralCrossRefGoogle Scholar
  67. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413PubMedCrossRefGoogle Scholar
  68. Half R (2009) Rejuvenation in distinct cell populations. Exp Gerontol 44:634–638CrossRefGoogle Scholar
  69. Hamm C, Costa F (2015) Epigenomes as therapeutic targets. Pharmacol Ther. doi: 10.1016/j.pharmthera.2015.03.003 PubMedGoogle Scholar
  70. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300PubMedCrossRefGoogle Scholar
  71. Hartl FU et al (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332PubMedCrossRefGoogle Scholar
  72. Hipp J, Atala A (2008) Sources of stem cells. Stem Cell Rev 4:3–11PubMedCrossRefGoogle Scholar
  73. Ho HN et al (1995) In vivo CD3+CD25+ lymphocyte subpopulation is down-regulated without increased serum- soluble interleukin-2 receptor (sIL-2R) by gonadotropin releasing hormone agonist (GnRH-a). Am J Reprod Immunol 33:134–139PubMedCrossRefGoogle Scholar
  74. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485PubMedCrossRefGoogle Scholar
  75. Hoxha M et al (2009) Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ Health 8:41PubMedPubMedCentralCrossRefGoogle Scholar
  76. Illouz YG, Sterodimas A (2011) Adipose stem cells and regenerative medicine. Springer, New YorkGoogle Scholar
  77. Ito K, Barnes PJ (2009) COPD as a disease of accelerated lung aging. Chest 135:173–180PubMedCrossRefGoogle Scholar
  78. Janich P et al. (2011) The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480(7376):209–214Google Scholar
  79. Janzen V et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426PubMedGoogle Scholar
  80. Jeyapalan J, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129:467–474PubMedPubMedCentralCrossRefGoogle Scholar
  81. Johansson CB et al (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedCrossRefGoogle Scholar
  82. Kanda N et al (1996) Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells. Clin Exp Immunol 106:410–415PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kapaj S et al (2006) Human health effects from chronic arsenic poisoning—a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2399–2428PubMedCrossRefGoogle Scholar
  84. Kappei D, Londoño-Vallejo JA (2008) Telomere length inheritance and aging. Mech Ageing Dev 129:17–26PubMedCrossRefGoogle Scholar
  85. Kassis I et al (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65:753–761PubMedCrossRefGoogle Scholar
  86. Keirstead HS et al (2005) Human embryonic stem cell- derived oligodendrocyte progenitor cell transplants remyeli- nate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705PubMedCrossRefGoogle Scholar
  87. Khaidakov M et al (2003) Accumulation of point mutations in mitochondrial DNA of aging mice. Mutat Res 526(1–2):1–7PubMedCrossRefGoogle Scholar
  88. Kim JH et al (2011) Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol 20:383–387PubMedCrossRefGoogle Scholar
  89. Kirkwood TB (2002) Evolution in ageing. Mech Ageing Dev 123:737–745PubMedCrossRefGoogle Scholar
  90. Kligman LH (1989) Photoaging. Manifestations, prevention, and treatment. Clin Geriatr Med 5:235–251PubMedGoogle Scholar
  91. Koga H et al (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215PubMedCrossRefGoogle Scholar
  92. Kriete A, Mayo KL (2009) Atypical pathways of NF-kappaB activation and aging. Exp Gerontol 44:250–255PubMedCrossRefGoogle Scholar
  93. Krishnamurthy J et al (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443(7110):453–457PubMedCrossRefGoogle Scholar
  94. Krtolica A et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98(21):12072–12077Google Scholar
  95. Kujoth GC et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484PubMedCrossRefGoogle Scholar
  96. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110PubMedCrossRefGoogle Scholar
  97. Lapasset L et al (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25:2248–2253PubMedPubMedCentralCrossRefGoogle Scholar
  98. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lasri A, Ben-Neriah B (2015) Senescence-associated inflammatory responses. Trends Immunol 36(4):217–228Google Scholar
  100. Lavasani et al (2012) Muscle-derived stem/progenitor cell dysfunction limits health span and lifespan in a murine progeria model. Nat Commun 3:6082012 Jan 3PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lavrovsky Y et al (2000) Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp Gerontol 35:521–532PubMedCrossRefGoogle Scholar
  102. Lee SH et al (2012a) Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts. Ann Dermatol 24:136–143PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lee SW et al (2012b) New neurons in an aged brain. Behav Brain Res 227:497–507PubMedCrossRefGoogle Scholar
  104. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52(3–5):159–164PubMedCrossRefGoogle Scholar
  105. Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24(11):1479–1497PubMedCrossRefGoogle Scholar
  106. Liu X et al (2013) Direct comparison of the potency of human mesenchymal stem. Int J Mol Med 31:407–415PubMedGoogle Scholar
  107. Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294PubMedCrossRefGoogle Scholar
  109. Lou Z et al (2009) Telomere length regulates ISG15 expression in human cells. Aging 1(7):608–621PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ludlow AT et al (2008) Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc 40:1764–1771PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lymperi S et al (2010) The HSC niche concept has turned 31. Has our knowledge matured? Ann N Y Acad Sci 1192(1):12–18PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ma D et al (2009) Metabonomic studies of schizophrenia and psychotropic medications: focus on alterations in CNS energy homeostasis. Bioanalysis 1(9):1615–1626PubMedCrossRefGoogle Scholar
  113. Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70PubMedCrossRefGoogle Scholar
  114. Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–4442008 Jul 24PubMedCrossRefGoogle Scholar
  115. Marino M et al (1997) Accumulation of dolichol and impaired signal transduction in aging. Aging (Milano) 9:433–434Google Scholar
  116. Marr RA (2010) Insights into neurogenesis and aging: potential therapy for degenerative disease? Future Neurol 5(4):527–541PubMedPubMedCentralCrossRefGoogle Scholar
  117. Martin GM (1987) Interactions of aging and environmental agents: the gerontological perspective. Prog Clin Biol Res 228:25–80PubMedGoogle Scholar
  118. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922PubMedCrossRefGoogle Scholar
  119. McGeer PL, McGeer EG (2004) Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035:104–116PubMedCrossRefGoogle Scholar
  120. Medeiros SF, Maitelli A (2007) A.P.B. Nince: Efeitos da terapia hormonal na menopausa sobre o sistema imune. Rev Brás Ginecol Obestet 29:593–601Google Scholar
  121. Mendelson J, Glasgow LA (1966) The in vitro and in vivo effects of cortisol on interferon production and action. J Immunol 96:345–352PubMedGoogle Scholar
  122. Mezey E et al (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782PubMedCrossRefGoogle Scholar
  123. Michikawa Y et al (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440):774–779PubMedCrossRefGoogle Scholar
  124. Migliore L, Coppede F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 674:73–84PubMedCrossRefGoogle Scholar
  125. Minamino T et al (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105(13):1541–1544PubMedCrossRefGoogle Scholar
  126. Miyahara Y et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465PubMedCrossRefGoogle Scholar
  127. Mizushima N et al (2008) Autophagy fights disease through cellular self digestion. Nature 451:1069–1075PubMedPubMedCentralCrossRefGoogle Scholar
  128. Mojallal A et al (2009) Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg 124:765–774PubMedCrossRefGoogle Scholar
  129. Molofsky AV et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452PubMedPubMedCentralCrossRefGoogle Scholar
  130. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885Google Scholar
  131. Moskalev EA et al (2012) RNA-directed epigenomic reprogramming: an emerging principle of a more targeted cancer therapy? Genes Chromosomes Cancer 51(2):105–110PubMedCrossRefGoogle Scholar
  132. Ness KK et al (2013) Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the st jude lifetime cohort study. J Clin Oncol 31:4496–4503PubMedPubMedCentralCrossRefGoogle Scholar
  133. Orimo et al (2009) Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol 29(6):889–8942009 JunGoogle Scholar
  134. Pacák K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stressrelated disorders. Endocr Rev 22(4):502–548PubMedCrossRefGoogle Scholar
  135. Palm W, de Lange T (2008) How shelter in protects mammalian telomeres. Annu Rev Genet 42:301–334PubMedCrossRefGoogle Scholar
  136. Pan L et al (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1(4):458–469PubMedCrossRefGoogle Scholar
  137. Partridge L (2014) Intervening in ageing to prevent the diseases of ageing. Trends Endocrinol Metab 25(11): 555–557Google Scholar
  138. Pascal T et al (2005) Comparison of replicative senescence and stress-induced premature senescence combining differential display and low-density. DNA Arrays 579(17):3651–3659Google Scholar
  139. Passos JF et al (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35(22):7505–7513PubMedPubMedCentralCrossRefGoogle Scholar
  140. Pawelec G et al (2014) Inflammation, ageing and chronic disease. Curr Opin Immunol 29:23–28PubMedCrossRefGoogle Scholar
  141. Pera MF (2011) Stem cells: the dark side of induced pluripotency. Nature 471:46–47PubMedCrossRefGoogle Scholar
  142. Perls T, Puca A (2002) The genetics of aging—implications for pharmacogenomics. Pharmacogenomics 3:469–484PubMedCrossRefGoogle Scholar
  143. Plock et al (2013) Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol. doi: 10.3389/fimmu.2013.00175 Google Scholar
  144. Powers ET et al (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991PubMedCrossRefGoogle Scholar
  145. Prasad K (2012) Resveratrol, wine, and atherosclerosis. Int J Angiol 21(1):7–18PubMedPubMedCentralCrossRefGoogle Scholar
  146. Prasad S et al (2012) Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med 54:S29–S37PubMedCrossRefGoogle Scholar
  147. Price JS et al (2002) The role of chondrocyte senescence in osteoarthritis. Aging Cell 1(1):57–65PubMedCrossRefGoogle Scholar
  148. Ralston SH et al (1990) Estrogen inhibits release of tumor necrosis factor from peripheral blood mononuclear cells in postmenopausal women. J Bone Miner Res 5:983–988PubMedCrossRefGoogle Scholar
  149. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086PubMedCrossRefGoogle Scholar
  150. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57PubMedPubMedCentralCrossRefGoogle Scholar
  151. Rando AT, Wyss-Coray T (2014) Stem cells as vehicles for youthful regeneration of aged tissues. J Gerontol A Biol Sci Med Sci 69(S1):S39–S42PubMedPubMedCentralCrossRefGoogle Scholar
  152. Rathbone et al (2009) Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 88(1):35–442009PubMedCrossRefGoogle Scholar
  153. Richter F (1995) Survival and morphology of isolated pancreatic acinar cells from rats with induced acute pancreatitis are not improved with anti-inflammatory drugs. Int J Pancreatol 18(2):145–152PubMedGoogle Scholar
  154. Rodier F et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979PubMedPubMedCentralCrossRefGoogle Scholar
  155. Rohani L et al (2014) The aging signature hallmark of induced pluripotent stem cells. Aging Cell 13(1):2–7Google Scholar
  156. Rossi DJ et al (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696PubMedCrossRefGoogle Scholar
  157. Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–691PubMedCrossRefGoogle Scholar
  158. Salminen A et al (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 4:166–175PubMedPubMedCentralCrossRefGoogle Scholar
  159. Schenke-Layland K et al (2009) Adipose tissue-derived cells improve cardiac function following myocardial infarction. J Surg Res 153(2):217–223PubMedCrossRefGoogle Scholar
  160. Selvaraj V et al (2010) Induced pluripotent stem cells and lineage reprogramming technologies. Trends Biotechnol 28(4):214–223Google Scholar
  161. Semov A et al (2002) Microarray analysis of E-box binding-related gene expression in young and replicatively senescent human fibroblasts. Anal Biochem 302(1):38–51PubMedCrossRefGoogle Scholar
  162. Serra-Mestre JM et al (2014) Platelet-rich plasma mixed-fat grafting: a reasonable Prosurvival strategy for fat grafts? Aesth Plast Surg 38:1041–1049CrossRefGoogle Scholar
  163. Setlow RB, Carrier WL (1966) Pyrimidine dimers in ultraviolet-irradiated DNA’s. J Mol Biol 17:237–254PubMedCrossRefGoogle Scholar
  164. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713PubMedCrossRefGoogle Scholar
  165. Shawi M, Autexier C (2008) Telomerase, senescence and ageing. Mech Ageing Dev 129:3–10PubMedCrossRefGoogle Scholar
  166. Shelton DN et al (1999) Microarray analysis of replicative senescence. Curr Biol 9(17):939–945PubMedCrossRefGoogle Scholar
  167. Sikora E (2011) Immunoregulation by interference RNA (iRNA) – mechanisms, role, perspective. Postepy Hig Med Dosw 65:482–495CrossRefGoogle Scholar
  168. Sikora E et al (2011) Impact of cellular senescence signature on ageing research. Ageing Res Rev 10:146–152PubMedCrossRefGoogle Scholar
  169. Smith MT et al (2007) Benzene exposure and risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomark Prev 16:385–391CrossRefGoogle Scholar
  170. Smith AN et al (2010) Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 316:48–54PubMedCrossRefGoogle Scholar
  171. Sohal RS et al (1994) Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 76(2–3):215–224PubMedCrossRefGoogle Scholar
  172. Soldner F et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977PubMedPubMedCentralCrossRefGoogle Scholar
  173. Sorrentino A et al (2014) Defining the toxicology of aging. Trends Mol Med 20(7):375–384Google Scholar
  174. Spadaccio C et al (2015) The role of extracellular matrix in age-related conduction disorders: a forgotten player? J Geriatr Cardiol 12:76–82PubMedPubMedCentralGoogle Scholar
  175. Spyridopoulos et al (2004) Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110(19):3136–3142Nov 9PubMedCrossRefGoogle Scholar
  176. Straub RH (2000) Cytokines and hormones as possible links between endocrinosenescence and immunosenescence. J Neuroimmunol 109:10–15PubMedCrossRefGoogle Scholar
  177. Straub RH et al (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 83:2012–2017PubMedCrossRefGoogle Scholar
  178. Tacutu R et al (2011) Molecular links between cellular senescence, longevity and age-related diseases – a systems biology perspective. Aging (Albany NY) 3(12):1178–1191PubMedCentralCrossRefGoogle Scholar
  179. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. Epub 2006 Aug 10Google Scholar
  180. Torella D et al (2004) Cardiac stem cells and myocyte aging, heart failure, and insulin-like growth factor1 overexpression. Circ Res 95:514–524CrossRefGoogle Scholar
  181. Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423PubMedCrossRefGoogle Scholar
  182. Trifunovic A et al (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102(50):17993–17998PubMedPubMedCentralCrossRefGoogle Scholar
  183. Upton AC (1957) Ionizing radiation and the aging process; a review. J Gerontol 12:306–313PubMedCrossRefGoogle Scholar
  184. Urbanek K et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102(24):8692–8697PubMedPubMedCentralCrossRefGoogle Scholar
  185. Valdes AM et al (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366(9486):662–664PubMedCrossRefGoogle Scholar
  186. Valerio A, Nisoli E (2015) NO to slow ageing. Front Cell Dev Biol 3:6Google Scholar
  187. Valina C et al (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28(21):2667–2677PubMedCrossRefGoogle Scholar
  188. Vermulst M et al (2008) Quantification of random mutations in the mitochondrial genome. Methods 46(4):263–268PubMedPubMedCentralCrossRefGoogle Scholar
  189. Villeda SA et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477(7362):90–94Aug 31PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wallace LA (1989) Major sources of benzene exposure. Environ Health Perspect 82:165–169PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wallace DC (2005) Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol 70:363–374PubMedCrossRefGoogle Scholar
  192. Wang F et al (2001) Preliminarily functional analysis of a cloned novel human gene ADAM29. Sci China C Life Sci 44(4):392–399PubMedCrossRefGoogle Scholar
  193. Wei JY (1992) Age and the cardiovascular system. N Engl J Med 327(24):1735–1739PubMedCrossRefGoogle Scholar
  194. Weiss S et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedGoogle Scholar
  195. WHO (2011) WHO, US National Institute of Aging: Global Health and Ageing.Google Scholar
  196. Yilmaz G et al (2010) Induction of neuro-protective/regenerative genes in stem cells infiltrating post-ischemic brain tissue. Exp Transl Stroke Med 2:11PubMedPubMedCentralCrossRefGoogle Scholar
  197. Yokoo T et al (2008) Kidney organogenesis and regeneration: a new era in the treatment of chronic renal failure? Clin Exp Nephrol 12:326–331PubMedCrossRefGoogle Scholar
  198. von Zglinicki T, Martin-Ruiz CM (2005) Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 5:197–203CrossRefGoogle Scholar
  199. Zhang ZG et al (2002) Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113:683–687PubMedCrossRefGoogle Scholar
  200. Zhang X et al (2013a) Environmental and occupational exposure to chemicals and telomere length in human studies. Occup Environ Med 70:743–749PubMedCrossRefGoogle Scholar
  201. Zhang GL et al (2013b) Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature 497:211–216. [PubMed: 23636330]PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.UCL Division of Surgery & Interventional ScienceLondonUK
  2. 2.Department of Plastic SurgeryRoyal Free Hospital NHS Foundation Trust HospitalLondonUK

Personalised recommendations