Adipose-Derived Stem Cells for Wound Healing: An Update

Part of the Stem Cells in Clinical Applications book series (SCCA)


Chronic wound healing is a serious problem worldwide, causing acute discomfort and affecting patients with various wound types, including but not restricted to diabetic foot ulcers, pressure ulcers, venous leg ulcers, burns, and traumatic injuries. The general pattern is a cycle of healing and recurrence, which has a considerable impact on an individual’s health and quality of life. Complications include infection, amputation, and even death. Advanced therapies help a proportion of patients, but up to 50 % of chronic wounds still fail to heal after treatment, and even more are at risk of recurrence.

Regenerative medicine has tried to respond to the need for new methods which improve the healing process, in order to reach favorable outcomes. Thus, over the last few years, stem cells application has been put forward as a promising novel therapy and different types of stem cells have since been studied. Mesenchymal stem cells obtained from adipose tissue have revealed strong tissue healing potential in both in vitro and in vivo studies, as they are attracted to the wound site and stimulate regeneration processes. Adipose-derived stem cells (ADSCs) are abundant and harvestable via a minimally invasive procedure, providing an elevated yield when isolated and proving suitable for clinical application without prior manipulation.

The most commonly used ADSCs isolation technique is that described in 1995 by Coleman in a stepwise procedure. The administration of ADSCs to chronic wounds enhances the regenerative wound microenvironment, promoting increased accelerated wound closure, reduced scarring, collagen synthesis, angiogenesis, and improved tensile strength. However, the number of cells that need to be harvested for effective implantation is not clear from the literature. Therefore, standardized, reliable, fast, and efficient protocols are required before large clinical trials are carried out.

Herein, the isolation technique for ADSCs is described, and preclinical and clinical applications on chronic wounds caused by several pathologies are reviewed.


Wound healing Chronic wounds Stem cell therapy Mesenchymal stem cells Autologous adipose tissue Regenerative medicine Coleman’s technique 



Adipose tissue-derived mesenchymal stem cell


Purified adipose-derived stem and regenerative cells


Adipose-derived stem cells


Adipose-derived stromal cells


Adipose-derived stem cells


Basic fibroblast growth factor


Enhanced PRP


Extracellular matrix


Fibroblast growth factor


Glycogen synthase kinase-3β/Fyn kinase/nuclear factor erythroid 2-related factor 2


Hyaluronic acid


Hepatocyte growth factor


Insulin-like growth factor


Keratinocyte growth factor


Matrix metalloproteinases


Matrix metalloproteinase


Platelet-derived growth factor


Polyglycolic acid


Platelet-rich plasma


Reactive oxygen species


Stromal cell-derived factor

TGF-A1 and TGF-2

Transforming growth factor-A1 and Transforming growth factor-2


Transforming growth factor-beta

TIME protocol

Tissue, infection, moisture, environment protocol


Tumor necrosis factor


Tumor necrosis factor-alpha


Vascular endothelial growth factor


  1. Akasaka Y, Ono I, Tominaga A, Ishikawa Y, Ito K, Suzuki T, Imaizumi R, Ishiguro S, Jimbow K, Ishii T (2007) Basic fibroblast growth factor in an artificial dermis promotes apoptosis and inhibits expression of alpha-smooth muscle actin, leading to reduction of wound contraction. Wound Repair Regen 15(3):378–389. doi: 10.1111/j.1524-475X.2007.00240.x PubMedCrossRefGoogle Scholar
  2. Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, Song YH, Alt EU (2009) IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 27(1):250–258. doi: 10.1634/stemcells.2008-0178 PubMedCrossRefGoogle Scholar
  3. Amato B, Coretti G, Compagna R, Amato M, Buffone G, Gigliotti D, Grande R, Serra R, de Franciscis S (2015) Role of matrix metalloproteinases in non-healing venous ulcers. Int Wound J 12(6):641–645. doi: 10.1111/iwj.12181 PubMedCrossRefGoogle Scholar
  4. Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, Rodeheaver GT, Peirce SM, Katz AJ (2010) Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A 16(5):1595–1606. doi: 10.1089/ten.TEA.2009.0616 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arana M, Mazo M, Aranda P, Pelacho B, Prosper F (2013) Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. Methods Mol Biol 1036:47–61. doi: 10.1007/978-1-62703-511-8_4 PubMedCrossRefGoogle Scholar
  6. Arcuri F, Brucoli M, Baragiotta N, Stellin L, Giarda M, Benech A (2013) The role of fat grafting in the treatment of posttraumatic maxillofacial deformities. Craniomaxillofac Trauma Reconstr 6(2):121–126. doi: 10.1055/s-0033-1333877 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Attinger CE, Janis JE, Steinberg J, Schwartz J, Al-Attar A, Couch K (2006) Clinical approach to wounds: debridement and wound bed preparation including the use of dressings and wound-healing adjuvants. Plast Reconstr Surg 117(7 Suppl):72S–109S. doi: 10.1097/01.prs.0000225470.42514.8f PubMedCrossRefGoogle Scholar
  8. Ayello EA, Dowsett C, Schultz GS, Sibbald RG, Falanga V, Harding K, Romanelli M, Stacey M, TE L, Vanscheidt W (2004) TIME heals all wounds. Nursing 34(4):36–41. quiz, 41-32PubMedCrossRefGoogle Scholar
  9. Badiavas EV, Ford D, Liu P, Kouttab N, Morgan J, Richards A, Maizel A (2007) Long-term bone marrow culture and its clinical potential in chronic wound healing. Wound Repair Regen 15(6):856–865. doi: 10.1111/j.1524-475X.2007.00305.x PubMedCrossRefGoogle Scholar
  10. Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, Gelmini S, Guasti D, Benvenuti S, Annunziato F, Bani D, Liotta F, Francini F, Perigli G, Serio M, Luconi M (2009) Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J 23(10):3494–3505. doi: 10.1096/fj.08-126946 PubMedCrossRefGoogle Scholar
  11. Bartsich S, Morrison N (2012) Composite fat and skin grafting for the management of chronic sickle cell ulcers. Wounds 24(3):51–54PubMedGoogle Scholar
  12. Biglioli F, Allevi F, Battista VM, Colombo V, Pedrazzoli M, Rabbiosi D (2014) Lipofilling of the atrophied lip in facial palsy patients. Minerva Stomatol 63(3):69–75PubMedGoogle Scholar
  13. Bitar MS (2012) The GSK-3beta/Fyn/Nrf2 pathway in fibroblasts and wounds of type 2 diabetes: on the road to an evidence-based therapy of non-healing wounds. Adipocytes 1(3):161–163. doi: 10.4161/adip.20235 CrossRefGoogle Scholar
  14. Blanton MW, Hadad I, Johnstone BH, Mund JA, Rogers PI, Eppley BL, March KL (2009) Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast Reconstr Surg 123(2 Suppl):56S–64S. doi: 10.1097/PRS.0b013e318191be2d PubMedCrossRefGoogle Scholar
  15. Bourguignon LY (2014) Matrix hyaluronan-activated CD44 signaling promotes keratinocyte activities and improves abnormal epidermal functions. Am J Pathol 184(7):1912–1919. doi: 10.1016/j.ajpath.2014.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Branski LK, Gauglitz GG, Herndon DN, Jeschke MG (2009) A review of gene and stem cell therapy in cutaneous wound healing. Burns 35(2):171–180. doi: 10.1016/j.burns.2008.03.009 PubMedCrossRefGoogle Scholar
  17. Bucky LP, Kanchwala SK (2007) The role of autologous fat and alternative fillers in the aging face. Plast Reconstr Surg 120(6 Suppl):89S–97S. doi: 10.1097/01.prs.0000248866.57638.40 PubMedCrossRefGoogle Scholar
  18. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120. doi: 10.1016/j.ymeth.2008.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L (2014) Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 16(2):245–257. doi: 10.1016/j.jcyt.2013.11.011 PubMedCrossRefGoogle Scholar
  20. Burnouf M, Buffet M, Schwarzinger M, Roman P, Bui P, Prevot M, Deleuze J, Morini JP, Franck N, Gorin I, Dupin N (2005) Evaluation of Coleman lipostructure for treatment of facial lipoatrophy in patients with human immunodeficiency virus and parameters associated with the efficiency of this technique. Arch Dermatol 141(10):1220–1224. doi: 10.1001/archderm.141.10.1220 PubMedCrossRefGoogle Scholar
  21. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650. doi: 10.1002/jor.1100090504 PubMedCrossRefGoogle Scholar
  22. Cervelli V, De Angelis B, Lucarini L, Spallone D, Balzani A, Palla L, Gentile P, Cerulli P (2010) Tissue regeneration in loss of substance on the lower limbs through use of platelet-rich plasma, stem cells from adipose tissue, and hyaluronic acid. Adv Skin Wound Care 23(6):262–272. doi: 10.1097/01.ASW.0000363551.82058.36 PubMedCrossRefGoogle Scholar
  23. Cervelli V, Gentile P, De Angelis B, Calabrese C, Di Stefani A, Scioli MG, Curcio BC, Felici M, Orlandi A (2011) Application of enhanced stromal vascular fraction and fat grafting mixed with PRP in post-traumatic lower extremity ulcers. Stem Cell Res 6(2):103–111. doi: 10.1016/j.scr.2010.11.003 PubMedCrossRefGoogle Scholar
  24. Cherubino M, Rubin JP, Miljkovic N, Kelmendi-Doko A, Marra KG (2011) Adipose-derived stem cells for wound healing applications. Ann Plast Surg 66(2):210–215. doi: 10.1097/SAP.0b013e3181e6d06c PubMedCrossRefGoogle Scholar
  25. Cho HH, Kyoung KM, Seo MJ, Kim YJ, Bae YC, Jung JS (2006) Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells Dev 15(6):853–864. doi: 10.1089/scd.2006.15.853 PubMedCrossRefGoogle Scholar
  26. Claro F Jr, Figueiredo JC, Zampar AG, Pinto-Neto AM (2012) Applicability and safety of autologous fat for reconstruction of the breast. Br J Surg 99(6):768–780. doi: 10.1002/bjs.8722 PubMedCrossRefGoogle Scholar
  27. Clauser LC, Tieghi R, Galie M, Carinci F (2011) Structural fat grafting: facial volumetric restoration in complex reconstructive surgery. J Craniofac Surg 22(5):1695–1701. doi: 10.1097/SCS.0b013e31822e5d5e PubMedCrossRefGoogle Scholar
  28. Clauser L, Ferroni L, Gardin C, Tieghi R, Galie M, Elia G, Piattelli A, Pinton P, Bressan E, Zavan B (2014) Selective augmentation of stem cell populations in structural fat grafts for maxillofacial surgery. PLoS One 9(11):e110796. doi: 10.1371/journal.pone.0110796 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Coelho MB, Cabral JM, Karp JM (2012) Intraoperative stem cell therapy. Annu Rev Biomed Eng 14:325–349. doi: 10.1146/annurev-bioeng-071811-150041 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthet Plast Surg 19(5):421–425CrossRefGoogle Scholar
  31. Coleman SR (2004) Structural fat grafting. Quality Medical Publishing, St LouisGoogle Scholar
  32. Conde-Green A, de Amorim NF, Pitanguy I (2010a) Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Reconstr Aesthet Surg 63(8):1375–1381. doi: 10.1016/j.bjps.2009.07.018 PubMedCrossRefGoogle Scholar
  33. Conde-Green A, Baptista LS, de Amorin NF, de Oliveira ED, da Silva KR, Pedrosa Cda S, Borojevic R, Pitanguy I (2010b) Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet Surg J 30(2):249–255. doi: 10.1177/1090820X10369512 PubMedCrossRefGoogle Scholar
  34. Cook H, Davies KJ, Harding KG, Thomas DW (2000) Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2, and MMP-2 activity. J Invest Dermatol 115(2):225–233. doi: 10.1046/j.1523-1747.2000.00044.x PubMedCrossRefGoogle Scholar
  35. Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:13CrossRefGoogle Scholar
  36. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109. doi:71150PubMedCrossRefGoogle Scholar
  37. Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39(9):706–715. doi: 10.1002/lsm.20549 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 25(7):304–314. doi: 10.1097/01.ASW.0000416006.55218.d0 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dollfus C, Blanche S, Trocme N, Funck-Brentano I, Bonnet F, Levan P (2009) Correction of facial lipoatrophy using autologous fat transplants in HIV-infected adolescents. HIV Med 10(5):263–268. doi: 10.1111/j.1468-1293.2008.00682.x PubMedCrossRefGoogle Scholar
  40. Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R (2009) Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 29(4):503–510. doi: 10.1161/ATVBAHA.108.178962 PubMedCrossRefGoogle Scholar
  41. Eisenbud D, Huang NF, Luke S, Silberklang M (2004) Skin substitutes and wound healing: current status and challenges. Wounds 16:16Google Scholar
  42. Endara MR, Allred LJ, Han KD, Baker SB (2014) Applications of fat grafting in facial aesthetic skeletal surgery. Aesthet Surg J 34(3):363–373. doi: 10.1177/1090820X14525964 PubMedCrossRefGoogle Scholar
  43. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743. doi: 10.1016/S0140-6736(05)67700-8 PubMedCrossRefGoogle Scholar
  44. Fossett E, Khan WS (2012) Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells Int 2012:465259. doi: 10.1155/2012/465259 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Friedenstein AJ (1980) Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus 25:19–29PubMedGoogle Scholar
  46. Fromm-Dornieden C, Koenen P (2013) Adipose-derived stem cells in wound healing: recent results in vitro and in vivo. OA Mol Cell Biol 1(1):1CrossRefGoogle Scholar
  47. Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 4(9):560–582. doi: 10.1089/wound.2015.0635 CrossRefGoogle Scholar
  48. Gardin C, Bressan E, Ferroni L, Nalesso E, Vindigni V, Stellini E, Pinton P, Sivolella S, Zavan B (2012) In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their genomical analyses through comparative genomic hybridization array: novel strategies to increase the successful engraftment of tissue-engineered bone grafts. Stem Cells Dev 21(5):767–777. doi: 10.1089/scd.2011.0147 PubMedCrossRefGoogle Scholar
  49. Gimble JM, Guilak F, Bunnell BA (2010) Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther 1(2):19. doi: 10.1186/scrt19 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gimble JM, Bunnell BA, Chiu ES, Guilak F (2011) Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells 29(5):749–754. doi: 10.1002/stem.629 PubMedCrossRefGoogle Scholar
  51. Gnanasegaran N, Govindasamy V, Musa S, Kasim NH (2014) Different isolation methods alter the gene expression profiling of adipose derived stem cells. Int J Med Sci 11(4):391–403. doi: 10.7150/ijms.7697 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Greenhalgh DG (1996) The role of growth factors in wound healing. J Trauma 41(1):159–167PubMedCrossRefGoogle Scholar
  53. Gronthos S, Zannettino AC (2011) Methods for the purification and characterization of human adipose-derived stem cells. Methods Mol Biol 702:109–120. doi: 10.1007/978-1-61737-960-4_9 PubMedCrossRefGoogle Scholar
  54. Guercio A, Di Bella S, Casella S, Di Marco P, Russo C, Piccione G (2013) Canine mesenchymal stem cells (MSCs): characterization in relation to donor age and adipose tissue-harvesting site. Cell Biol Int 37(8):789–798. doi: 10.1002/cbin.10090 PubMedCrossRefGoogle Scholar
  55. Guijarro-Martinez R, Miragall Alba L, Marques Mateo M, Puche Torres M, Pascual Gil JV (2011) Autologous fat transfer to the cranio-maxillofacial region: updates and controversies. J Craniomaxillofac Surg 39(5):359–363. doi: 10.1016/j.jcms.2010.07.004 PubMedCrossRefGoogle Scholar
  56. Guisantes E, Fontdevila J, Rodriguez G (2012) Autologous fat grafting for correction of unaesthetic scars. Ann Plast Surg 69(5):550–554. doi: 10.1097/SAP.0b013e31821ee386 PubMedCrossRefGoogle Scholar
  57. Hardy TG, Joshi N, Kelly MH (2007) Orbital volume augmentation with autologous micro-fat grafts. Ophthal Plast Reconstr Surg 23(6):445–449. doi: 10.1097/IOP.0b013e31815928f8 PubMedCrossRefGoogle Scholar
  58. Hendrickx B, Verdonck K, Van den Berge S, Dickens S, Eriksson E, Vranckx JJ, Luttun A (2010) Integration of blood outgrowth endothelial cells in dermal fibroblast sheets promotes full thickness wound healing. Stem Cells 28(7):1165–1177. doi: 10.1002/stem.445 PubMedGoogle Scholar
  59. Holtan SG, Weisdorf DJ (2014) The donor’s dilemma. Blood 123(23):3538–3539. doi: 10.1182/blood-2014-04-571661 PubMedCrossRefGoogle Scholar
  60. Hong SJ, Jia SX, Xie P, Xu W, Leung KP, Mustoe TA, Galiano RD (2013) Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One 8(1):e55640. doi: 10.1371/journal.pone.0055640 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Huang SP, Huang CH, Shyu JF, Lee HS, Chen SG, Chan JY, Huang SM (2013) Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J Biomed Sci 20:51. doi: 10.1186/1423-0127-20-51 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hunstad JP (1995) Tumescent and syringe liposculpture: a logical partnership. Aesthet Plast Surg 19(4):321–333CrossRefGoogle Scholar
  63. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, Kim SW, Yang YS, Oh W, Chang JW (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14(9):17986–18001. doi: 10.3390/ijms140917986 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kaoutzanis C, Xin M, Ballard TN, Welch KB, Momoh AO, Kozlow JH, Brown DL, Cederna PS, Wilkins EG (2016) Autologous fat grafting after breast reconstruction in postmastectomy patients: complications, biopsy rates, and locoregional cancer recurrence rates. Ann Plast Surg 76(3):270–275. doi: 10.1097/SAP.0000000000000561 PubMedCrossRefGoogle Scholar
  65. Kim WS, Park BS, Sung JH (2009) The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 9(7):879–887. doi: 10.1517/14712590903039684 PubMedCrossRefGoogle Scholar
  66. Kim M, Kim I, Lee SK, Bang SI, Lim SY (2011) Clinical trial of autologous differentiated adipocytes from stem cells derived from human adipose tissue. Dermatol Surg 37(6):750–759. doi: 10.1111/j.1524-4725.2011.01765.x PubMedCrossRefGoogle Scholar
  67. Kim H, Choi K, Kweon OK, Kim WH (2012) Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. J Dermatol Sci 68(3):149–156. doi: 10.1016/j.jdermsci.2012.09.013 PubMedCrossRefGoogle Scholar
  68. Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, Doi K, Kanayama K, Feng J, Mashiko T, Kurisaki A, Yoshimura K (2015) Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4(2):146–155. doi: 10.5966/sctm.2014-0181 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Koenen P, Spanholtz TA, Maegele M, Sturmer E, Brockamp T, Neugebauer E, Thamm OC (2015) Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing. Int Wound J 12(1):10–16. doi: 10.1111/iwj.12039 PubMedCrossRefGoogle Scholar
  70. Kuo YR, Wang CT, Cheng JT, Kao GS, Chiang YC, Wang CJ (2016) Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transplant 25(1):71–81. doi: 10.3727/096368915X687921 PubMedCrossRefGoogle Scholar
  71. Lauritano D, Palmieri A, Vinci R, Azzi L, Taglabue A, Carinci F (2014) Adipose derived stem cells: basic science fundaments and clinical application. An update. Minerva Stomatol 63(7–8):273–281PubMedGoogle Scholar
  72. Lazarus GS, Cooper DM, Knighton DR, Percoraro RE, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 2(3):165–170. doi: 10.1046/j.1524-475X.1994.20305.x PubMedCrossRefGoogle Scholar
  73. Lee SH, Lee JH, Cho KH (2011) Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol 23(2):150–155. doi: 10.5021/ad.2011.23.2.150 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J 76(7):1750–1760PubMedCrossRefGoogle Scholar
  75. Lim JS, Yoo G (2010) Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model. J Korean Med Sci 25(5):746–751. doi: 10.3346/jkms.2010.25.5.746 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lin YC, Grahovac T, Oh SJ, Ieraci M, Rubin JP, Marra KG (2013) Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater 9(2):5243–5250. doi: 10.1016/j.actbio.2012.09.028 PubMedCrossRefGoogle Scholar
  77. Maharlooei MK, Bagheri M, Solhjou Z, Jahromi BM, Akrami M, Rohani L, Monabati A, Noorafshan A, Omrani GR (2011) Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract 93(2):228–234. doi: 10.1016/j.diabres.2011.04.018 PubMedCrossRefGoogle Scholar
  78. Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G, Capuozzo V, Barbarisi M, Rosso F, Giordano G, Iovino F, Barbarisi A (2013) Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res 185(1):36–44. doi: 10.1016/j.jss.2013.05.024 PubMedCrossRefGoogle Scholar
  79. Markarian CF, Frey GZ, Silveira MD, Chem EM, Milani AR, Ely PB, Horn AP, Nardi NB, Camassola M (2014) Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnol Lett 36(4):693–702. doi: 10.1007/s10529-013-1425-x PubMedCrossRefGoogle Scholar
  80. McCarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care (New Rochelle) 2(8):438–447. doi: 10.1089/wound.2012.0370 CrossRefGoogle Scholar
  81. Messina A, Bortolotto SK, Cassell OC, Kelly J, Abberton KM, Morrison WA (2005) Generation of a vascularized organoid using skeletal muscle as the inductive source. FASEB J 19(11):1570–1572. doi: 10.1096/fj.04-3241fje PubMedGoogle Scholar
  82. Miller JP, Perry EH, Price TH, Bolan CD Jr, Karanes C, Boyd TM, Chitphakdithai P, King RJ (2008) Recovery and safety profiles of marrow and PBSC donors: experience of the National Marrow Donor Program. Biol Blood Marrow Transplant 14(9 Suppl):29–36. doi: 10.1016/j.bbmt.2008.05.018 PubMedCrossRefGoogle Scholar
  83. Mineda K, Feng J, Ishimine H, Takada H, Doi K, Kuno S, Kinoshita K, Kanayama K, Kato H, Mashiko T, Hashimoto I, Nakanishi H, Kurisaki A, Yoshimura K (2015) Therapeutic potential of human adipose-derived stem/stromal cell microspheroids prepared by three-dimensional culture in non-cross-linked hyaluronic acid gel. Stem Cells Transl Med 4(12):1511–1522. doi: 10.5966/sctm.2015-0037 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mizuno H, Nambu M (2011) Adipose-derived stem cells for skin regeneration. Methods Mol Biol 702:453–459. doi: 10.1007/978-1-61737-960-4_33 PubMedCrossRefGoogle Scholar
  85. Mojallal A, Auxenfans C, Lequeux C, Braye F, Damour O (2008) Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal-vascular fraction. Biomed Mater Eng 18(4–5):193–197PubMedGoogle Scholar
  86. Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118(3 Suppl):121S–128S. doi: 10.1097/01.prs.0000234609.74811.2e PubMedCrossRefGoogle Scholar
  87. Nambu M, Ishihara M, Nakamura S, Mizuno H, Yanagibayashi S, Kanatani Y, Hattori H, Takase B, Ishizuka T, Kishimoto S, Amano Y, Yamamoto N, Azuma R, Kiyosawa T (2007) Enhanced healing of mitomycin C-treated wounds in rats using inbred adipose tissue-derived stromal cells within an atelocollagen matrix. Wound Repair Regen 15(4):505–510. doi: 10.1111/j.1524-475X.2007.00258.x PubMedCrossRefGoogle Scholar
  88. Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, Azuma R, Nakamura S, Kiyosawa T, Ishihara M, Kanatani Y (2009) Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 62(3):317–321. doi: 10.1097/SAP.0b013e31817f01b6 PubMedCrossRefGoogle Scholar
  89. Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20(2):205–216. doi: 10.3727/096368910X520065 PubMedCrossRefGoogle Scholar
  90. Pandis L, Zavan B, Abatangelo G, Lepidi S, Cortivo R, Vindigni V (2010) Hyaluronan-based scaffold for in vivo regeneration of the rat vena cava: preliminary results in an animal model. J Biomed Mater Res A 93(4):1289–1296. doi: 10.1002/jbm.a.32626 PubMedGoogle Scholar
  91. Phillips TJ (2001) Current approaches to venous ulcers and compression. Dermatol Surg 27(7):611–621PubMedGoogle Scholar
  92. Piombino P, Marenzi G, Dell'Aversana Orabona G, Califano L, Sammartino G (2015) Autologous fat grafting in facial volumetric restoration. J Craniofac Surg 26(3):756–759. doi: 10.1097/SCS.0000000000001663 PubMedCrossRefGoogle Scholar
  93. Pu LL, Coleman SR, Cui X, Ferguson RE Jr, Vasconez HC (2008) Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg 122(3):932–937. doi: 10.1097/PRS.0b013e3181811ff0 PubMedCrossRefGoogle Scholar
  94. Pulsfort AK, Wolter TP, Pallua N (2011) The effect of centrifugal forces on viability of adipocytes in centrifuged lipoaspirates. Ann Plast Surg 66(3):292–295. doi: 10.1097/SAP.0b013e3181c7140e PubMedCrossRefGoogle Scholar
  95. Pulsipher MA, Chitphakdithai P, Logan BR, Navarro WH, Levine JE, Miller JP, Shaw BE, O’Donnell PV, Majhail NS, Confer DL (2014) Lower risk for serious adverse events and no increased risk for cancer after PBSC vs BM donation. Blood 123(23):3655–3663. doi: 10.1182/blood-2013-12-542464 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Raposio E, Bertozzi N, Bonomini S, Bernuzzi G, Formentini A, Grignaffini E, Pio Grieco M (2016) Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds 28(4):6Google Scholar
  97. Reiber GE, Boyko EJ, Smith DG (1995) Lower extremity foot ulcers and amputations in diabetes. Diabetes in America, 2nd edn. U. S. Government Printing Office, Washington, DC. First publishedGoogle Scholar
  98. Reshak AH, Shahimin MM, Buang F (2013) Comparative study on human and bovine AT-SC isolation methods. Prog Biophys Mol Biol 113(2):295–298. doi: 10.1016/j.pbiomolbio.2013.09.001 PubMedCrossRefGoogle Scholar
  99. Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422 . doi: 10.1097/01.prs.0000256047.47909.71discussion 1423–1404PubMedCrossRefGoogle Scholar
  100. Rizzi SC, Upton Z, Bott K, Dargaville TR (2010) Recent advances in dermal wound healing: biomedical device approaches. Expert Rev Med Devices 7(1):143–154. doi: 10.1586/erd.09.57 PubMedCrossRefGoogle Scholar
  101. Robertson L, Lee AJ, Gallagher K, Carmichael SJ, Evans CJ, McKinstry BH, Fraser SC, Allan PL, Weller D, Ruckley CV, Fowkes FG (2009) Risk factors for chronic ulceration in patients with varicose veins: a case control study. J Vasc Surg 49(6):1490–1498. doi: 10.1016/j.jvs.2009.02.237 PubMedCrossRefGoogle Scholar
  102. Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, Rouyer O, Ardisson O, Rutschi H, Sigaudo-Roussel D, Damour O, Mojallal A (2015) Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res Ther 6:241. doi: 10.1186/s13287-015-0238-3 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rodriguez-Menocal L, Salgado M, Ford D, Van Badiavas E (2012) Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients. Stem Cells Transl Med 1(3):221–229. doi: 10.5966/sctm.2011-0029 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rose JG Jr, Lucarelli MJ, Lemke BN, Dortzbach RK, Boxrud CA, Obagi S, Patel S (2006) Histologic comparison of autologous fat processing methods. Ophthal Plast Reconstr Surg 22(3):195–200. doi: 10.1097/01.iop.0000217710.09941.10 PubMedCrossRefGoogle Scholar
  105. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163(2):257–268. doi: 10.1111/j.1365-2133.2010.09804.x PubMedCrossRefGoogle Scholar
  106. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11(Suppl 1):S1–28PubMedCrossRefGoogle Scholar
  107. Seifter E, Rettura G, Padawer J, Stratford F, Kambosos D, Levenson SM (1981) Impaired wound healing in streptozotocin diabetes. Prevention by supplemental vitamin A. Ann Surg 194(1):42–50PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sensebe L, Bourin P (2009) Mesenchymal stem cells for therapeutic purposes. Transplantation 87(9 Suppl):S49–S53. doi: 10.1097/TP.0b013e3181a28635 PubMedCrossRefGoogle Scholar
  109. Seth AK, Hirsch EM, Kim JY, Fine NA (2012) Long-term outcomes following fat grafting in prosthetic breast reconstruction: a comparative analysis. Plast Reconstr Surg 130(5):984–990. doi: 10.1097/PRS.0b013e318267d34d PubMedCrossRefGoogle Scholar
  110. Shen T, Pan ZG, Zhou X, Hong CY (2013) Accelerated healing of diabetic wound using artificial dermis constructed with adipose stem cells and poly (L-glutamic acid)/chitosan scaffold. Chin Med J 126(8):1498–1503PubMedGoogle Scholar
  111. Shu W, Shu YT, Dai CY, Zhen QZ (2012) Comparing the biological characteristics of adipose tissue-derived stem cells of different persons. J Cell Biochem 113(6):2020–2026. doi: 10.1002/jcb.24070 PubMedCrossRefGoogle Scholar
  112. Slavin J (1996) The role of cytokines in wound healing. J Pathol 178(1):5–10. doi:10.1002/(SICI)1096-9896(199601)178:1<5::AID-PATH443>3.0.CO;2-WPubMedCrossRefGoogle Scholar
  113. Steinberg JP, Hong SJ, Geringer MR, Galiano RD, Mustoe TA (2012) Equivalent effects of topically-delivered adipose-derived stem cells and dermal fibroblasts in the ischemic rabbit ear model for chronic wounds. Aesthet Surg J 32(4):504–519. doi: 10.1177/1090820X12442679 PubMedCrossRefGoogle Scholar
  114. Stojadinovic A, Carlson JW, Schultz GS, Davis TA, Elster EA (2008) Topical advances in wound care. Gynecol Oncol 111(2 Suppl):S70–S80. doi: 10.1016/j.ygyno.2008.07.042 PubMedCrossRefGoogle Scholar
  115. Suga H, Matsumoto D, Inoue K, Shigeura T, Eto H, Aoi N, Kato H, Abe H, Yoshimura K (2008) Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg 122(1):103–114. doi: 10.1097/PRS.0b013e31817742ed PubMedCrossRefGoogle Scholar
  116. Telgenhoff D, Shroot B (2005) Cellular senescence mechanisms in chronic wound healing. Cell Death Differ 12(7):695–698. doi: 10.1038/sj.cdd.4401632 PubMedCrossRefGoogle Scholar
  117. Tocco I, Zavan B, Bassetto F, Vindigni V. Nanotechnology-based therapies for skin wound regeneration. J Nanomater 2012:714134 1–11. doi: 10.1155/2012/714134
  118. Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2014) The effect of bone-marrow-derived stem cells and adipose-derived stem cells on wound contraction and epithelization. Adv Wound Care (New Rochelle) 3(6):405–413. doi: 10.1089/wound.2014.0539 CrossRefGoogle Scholar
  119. Wall IB, Moseley R, Baird DM, Kipling D, Giles P, Laffafian I, Price PE, Thomas DW, Stephens P (2008) Fibroblast dysfunction is a key factor in the non-healing of chronic venous leg ulcers. J Invest Dermatol 128(10):2526–2540. doi: 10.1038/jid.2008.114 PubMedCrossRefGoogle Scholar
  120. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430PubMedCrossRefGoogle Scholar
  121. Weichman KE, Broer PN, Tanna N, Wilson SC, Allan A, Levine JP, Ahn C, Choi M, Karp NS, Allen R (2013) The role of autologous fat grafting in secondary microsurgical breast reconstruction. Ann Plast Surg 71(1):24–30. doi: 10.1097/SAP.0b013e3182920ad0 PubMedCrossRefGoogle Scholar
  122. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168PubMedCrossRefGoogle Scholar
  123. Wong VW, Levi B, Rajadas J, Longaker MT, Gurtner GC (2012) Stem cell niches for skin regeneration. Int J Biomater 2012:926059. doi: 10.1155/2012/926059 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Woo K, Ayello EA, Sibbald RG (2007) The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care 20(2):99–117. quiz 118–119PubMedCrossRefGoogle Scholar
  125. Wu W, Niklason L, Steinbacher DM (2013) The effect of age on human adipose-derived stem cells. Plast Reconstr Surg 131(1):27–37. doi: 10.1097/PRS.0b013e3182729cfc PubMedCrossRefGoogle Scholar
  126. Yolanda MM, Maria AV, Amaia FG, Marcos PB, Silvia PL, Dolores E, Jesùs OH (2014) Adult stem cell therapy in chronic wound healing. J Stem Cell Res Ther 4:1CrossRefGoogle Scholar
  127. Yoshimura K, Suga H, Eto H (2009) Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med 4(2):265–273. doi: 10.2217/17460751.4.2.265 PubMedCrossRefGoogle Scholar
  128. You HJ, Han SK (2014) Cell therapy for wound healing. J Korean Med Sci 29(3):311–319. doi: 10.3346/jkms.2014.29.3.311 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zavan B, Vindigni V, Vezzu K, Zorzato G, Luni C, Abatangelo G, Elvassore N, Cortivo R (2009) Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study. J Mater Sci Mater Med 20(1):235–247. doi: 10.1007/s10856-008-3566-3 PubMedCrossRefGoogle Scholar
  130. Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P (2013) Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp 79:e50585. doi: 10.3791/50585 Google Scholar
  131. Zografou A, Papadopoulos O, Tsigris C, Kavantzas N, Michalopoulos E, Chatzistamatiou T, Papassavas A, Stavropoulou-Gioka C, Dontas I, Perrea D (2013) Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Ann Plast Surg 71(2):225–232. doi: 10.1097/SAP.0b013e31826af01a PubMedCrossRefGoogle Scholar
  132. Zollino I, Zuolo M, Gianesini S, Pedriali M, Sibilla MG, Tessari M, Carinci F, Occhionorelli S, Zamboni P (2016) Autologous adipose-derived stem cells: basic science, technique, and rationale for application in ulcer and wound healing. Phlebology. doi: 10.1177/0268355516641546 PubMedGoogle Scholar
  133. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi: 10.1089/107632701300062859 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Morphology, Surgery and Experimental Medicine, Section of Translational of Medicine and SurgeryUniversity of FerraraFerraraItaly
  2. 2.Sant’Anna University Hospital, Vascular Diseases Center and Institute of Translational Medicine and Surgery, University of FerraraFerraraItaly

Personalised recommendations