Advertisement

Stem Cell Transplantation in Diabetes Mellitus Type I and Type II

Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

This chapter reviews significant advances in the transplantation of stem cell-derived insulin-producing cells in diabetes mellitus type I and type II. The successful outcome has been achieved in the standardization of stem cell identification, isolation, purification, differentiation, expansion, and storage procedures. Transplantation of stem cell-derived insulin-producing cells effectively reduced hyperglycaemia, although normalization was not achieved. This is partially due to the complex architecture and physiology of the native pancreas, a poor understanding of aetiology of the disease, and the interactions between β-cells and other endocrine cells, growth factors, and pancreatic extracellular matrix. While current research endeavours are promising, the transition to safe and effective clinical implementation faces significant obstacles. Collaborative efforts are required to overcome tumorigenicity, immune rejection, and functional immaturity of stem cell-derived insulin-producing cells and speed up this novel therapy for restoring β-cell function in diabetic patients to prevent diabetic complications.

Keywords

Diabetes mellitus Stem cells Stem cell transplantation Mesenchymal stem cells Haematopoietic stem cells 

References

  1. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF (2002) Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 143(8):3152–3161PubMedCrossRefGoogle Scholar
  2. Ahrén B (2008) Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci 1144:28–35PubMedCrossRefGoogle Scholar
  3. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H (1999) Notch signalling controls pancreatic cell differentiation. Nature 400(6747):877–881. doi: 10.1038/23716 PubMedCrossRefGoogle Scholar
  4. Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S, Sieweke M, Stein R (2007) MafB is required for islet beta cell maturation. Proc Natl Acad Sci U S A 104(10):3853–3858. doi: 10.1073/pnas.0700013104 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50(8):1691–1697PubMedCrossRefGoogle Scholar
  6. Bassi EJ, Moraes-Vieira PMM, Moreira Sá CSR, Almeida DC, Vieira LM, Cunha CS, Hiyane MI, Basso AS, Pacheco-Silva A, Câmara NOS (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61:2534PubMedPubMedCentralCrossRefGoogle Scholar
  7. Behzad-Behbahani A, Pouransari R, Tabei SZ, Rahiminejad MS, Robati M, Yaghobi R, Nourani H, Ramzi MM, Farhadi-Andarabi A, Mojiri A, Rahsaz M, Banihashemi M, Zare N (2005) Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation. Transplant Proc 37(7):3211–3212. doi: 10.1016/j.transproceed.2005.07.007 PubMedCrossRefGoogle Scholar
  8. Bertera S, Crawford ML, Alexander AM, Papworth GD, Watkins SC, Robbins PD, Trucco M (2003) Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. Diabetes 52(2):387–393PubMedCrossRefGoogle Scholar
  9. Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells (Dayt Ohio) 22(4):625–634. doi: 10.1634/stemcells.22-4-625 CrossRefGoogle Scholar
  10. Bleich D (2009) Umbilical cord blood and type 1 diabetes: a road ahead or dead end? Diabetes Care 32(11):2138–2139. doi: 10.2337/dc09-1456 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, Wobus AM (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 100(3):998–1003PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bonner-Weir S (2000) Life and death of the pancreatic beta cells. Trends Endocrinol Metab: TEM 11(9):375–378PubMedCrossRefGoogle Scholar
  13. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O’Neil JJ (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci U S A 97(14):7999–8004PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bose B, Shenoy PS, Konda S, Wangikar P (2012) Human embryonic stem cell differentiation into insulin secreting beta cells for diabetes. Cell Biol Int 36:1013. doi: 10.1042/CBI20120210 PubMedCrossRefGoogle Scholar
  15. Bouwens L, Klöppel G (1996) Islet cell neogenesis in the pancreas. Virchows Arch: Int J Pathol 427(6):553–560CrossRefGoogle Scholar
  16. Brolén GKC, Heins N, Edsbagge J, Semb H (2005) Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing beta-cell-like cells. Diabetes 54(10):2867–2874PubMedCrossRefGoogle Scholar
  17. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86(10):3828–3832PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bulotta A, Hui H, Anastasi E, Bertolotto C, Boros LG, Di Mario U, Perfetti R (2002) Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol 29(3):347–360PubMedCrossRefGoogle Scholar
  19. Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3(1):e1451. doi: 10.1371/journal.pone.0001451 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen C, Leavitt T, Sibley E (2012) Intestinal Pdx1 mediates nutrient metabolism gene networks and maternal expression is essential for perinatal growth in mice. Biochem Biophys Res Commun:2–6. doi: 10.1016/j.bbrc.2012.06.153
  21. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46(10):1366–1374PubMedCrossRefGoogle Scholar
  22. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic – cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(suppl_2):S97–S107. doi: 10.2337/diabetes.54.suppl_2.S97 PubMedCrossRefGoogle Scholar
  23. Couri CEB, Oliveira MCB, Stracieri ABPL, Moraes DA, Pieroni F, Barros GMN, Madeira MIA, Malmegrim KCR, Foss-Freitas MC, Simões BP, Martinez EZ, Foss MC, Burt RK, Voltarelli JC (2009) C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 301(15):1573–1579. doi: 10.1001/jama.2009.470 PubMedCrossRefGoogle Scholar
  24. Dénes B, Yu J, Fodor N, Takátsy Z, Fodor I, Langridge WHR (2006) Suppression of hyperglycemia in NOD mice after inoculation with recombinant vaccinia viruses. Mol Biotechnol 34(3):317–327. doi: 10.1385/MB:34:3:317 PubMedCrossRefGoogle Scholar
  25. Dilorio PJ, Moss JB, Sbrogna JL, Karlstrom RO, Moss LG (2002) Sonic hedgehog is required early in pancreatic islet development. Dev Biol 244(1):75–84. doi: 10.1006/dbio.2002.0573 CrossRefGoogle Scholar
  26. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41–46. doi: 10.1038/nature02520 PubMedCrossRefGoogle Scholar
  27. Duffy MM, Ritter T, Ceredig R, Griffin MD (2011) Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2(4):34–34. doi: 10.1186/scrt75 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Duvivier-Kali VF, Omer A, Parent RJ, O'Neil JJ, Weir GC (2001) Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 50(8):1698–1705PubMedCrossRefGoogle Scholar
  29. Emamaullee JA, Shapiro AMJ (2006) Interventional strategies to prevent beta-cell apoptosis in islet transplantation. Diabetes 55(7):1907–1914. doi: 10.2337/db05-1254 PubMedCrossRefGoogle Scholar
  30. Ende N, Chen R, Reddi AS (2004) Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun 325(3):665–669PubMedCrossRefGoogle Scholar
  31. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedCrossRefGoogle Scholar
  32. Fernandes A, King LC, Guz Y, Stein R, Wright CV, Teitelman G (1997) Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology 138(4):1750–1762PubMedCrossRefGoogle Scholar
  33. Fotino C, Ricordi C, Lauriola V, Alejandro R, Pileggi A (2010) Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes. Rev Diabet Stud: RDS 7(2):144–157. doi: 10.1900/RDS.2010.7.144 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fu S, Fei Q, Jiang H, Chuai S, Shi S, Xiong W, Jiang L, Lu C, Atadja P, Li E, Shou J (2011) Involvement of histone acetylation of Sox17 and Foxa2 promoters during mouse definitive endoderm differentiation revealed by microRNA profiling. PLoS One 6(11):e27965PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fujikawa T, Oh S-H, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem. Am J Pathol 166(6):1781–1791. Cells C-dI-pPubMedPubMedCentralCrossRefGoogle Scholar
  36. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T, Uemoto S (2011) Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43(1):34–41. doi: 10.1038/ng.722 PubMedCrossRefGoogle Scholar
  37. Gannon MC, Nuttall FQ (2010) Amino acid ingestion and glucose metabolism – a review. IUBMB Life 62(9):660–668PubMedCrossRefGoogle Scholar
  38. Gao X, Song L, Shen K, Wang H, Niu W, Qin X (2008) Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice. Biochem Biophys Res Commun 371(1):132–137PubMedCrossRefGoogle Scholar
  39. Gene AB, Contreras Juan L, Bilbao GU, CHA S, Jiang Xiao L, Eckhoff DEE, Jenkins STM, Thomas FRT, Curiel DAT, Thomas JUM (2001) Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the anti-apoptotic bcl-2 gene1. Transplantation 71(8):1015–1023CrossRefGoogle Scholar
  40. German MS (1993) Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci U S A 90(5):1781–1785PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gong J, Zhang G, Tian F, Wang Y (2012) Islet-derived stem cells from adult rats participate in the repair of islet damage. J Mol Histol 43:745. doi: 10.1007/s10735-012-9447-6 PubMedCrossRefGoogle Scholar
  42. Grompe M (2012) Tissue stem cells: new tools and functional diversity. Cell Stem Cell 10(6):685–689PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gu G, Brown JR, Melton DA (2003) Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech Dev 120(1):35–43PubMedCrossRefGoogle Scholar
  44. Hakim NS (2002) Pancreatic transplantation for patients with type I diabetes. HPB: Off J Int Hepatol Pancreatol Biliary Assoc 4(2):59–61. doi: 10.1080/136518202760378407 CrossRefGoogle Scholar
  45. Haller MJ, Viener H-L, Wasserfall C, Brusko T, Atkinson MA, Schatz DA (2008) Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol 36(6):710–715. doi: 10.1016/j.exphem.2008.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hang Y, Stein R (2011) MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab: TEM 22(9):364–373PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hardikar AA, Marcus-Samuels B, Geras-Raaka E, Raaka BM, Gershengorn MC (2003) Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc Natl Acad Sci U S A 100(12):7117–7122. doi: 10.1073/pnas.1232230100 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hasegawa Y, Ogihara T, Yamada T, Ishigaki Y, Imai J, Uno K, Gao J, Kaneko K, Ishihara H, Sasano H, Nakauchi H, Oka Y, Katagiri H (2007) Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology 148(5):2006–2015PubMedCrossRefGoogle Scholar
  49. Hayashi KY, Tamaki H, Handa K, Takahashi T, Kakita A, Yamashina S (2003) Differentiation and proliferation of endocrine cells in the regenerating rat pancreas after 90% pancreatectomy. Arch Histol Cytol 66(2):163–174PubMedCrossRefGoogle Scholar
  50. Hayek A, Beattie GM, Cirulli V, Lopez AD, Ricordi C, Rubin JS (1995) Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes 44(12):1458–1460PubMedCrossRefGoogle Scholar
  51. He D, Wang J, Gao Y, Zhang Y (2011) Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro. Int J Mol Med 28(6):1019–1024PubMedGoogle Scholar
  52. Hebrok M (2003) Hedgehog signaling in pancreas development. Mech Dev 120(1):45–57PubMedCrossRefGoogle Scholar
  53. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21(7):763–770PubMedCrossRefGoogle Scholar
  54. Hosoya M, Kunisada Y, Kurisaki A, Asashima M (2012) Induction of differentiation of undifferentiated cells into pancreatic beta cells in vertebrates. Int J Dev Biol 56(5):313–323PubMedCrossRefGoogle Scholar
  55. Houard N, Rousseau GG, Lemaigre FP (2003) HNF-6-independent differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 46(3):378–385. doi: 10.1007/s00125-003-1041-8 PubMedCrossRefGoogle Scholar
  56. Huang Y, Kucia M, Hussain L-R, Wen Y, Xu H, Yan J, Ratajczak MZ, Ildstad ST (2010) Bone marrow transplantation temporarily improves pancreatic function in streptozotocin-induced diabetes: potential involvement of very small embryonic-like cells. Transplantation 89(6):677–685PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111(6):843–850PubMedPubMedCentralCrossRefGoogle Scholar
  58. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A 105(50):19915–19919. doi: 10.1073/pnas.0805803105 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Iskovich S, Kaminitz A, Yafe MP, Mizrahi K, Stein J, Yaniv I, Askenasy N (2007) Participation of adult bone marrow-derived stem cells in pancreatic regeneration: neogenesis versus endogenesis. Curr Stem Cell Res Ther 2(4):272–279PubMedCrossRefGoogle Scholar
  60. Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, Nair I, Ferreri K, Kandeel F, Mullen Y (2010) Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89(12):1438–1445PubMedCrossRefGoogle Scholar
  61. Jaramillo M, Banerjee I (2012) Endothelial cell co-culture mediates maturation of human embryonic stem cell to pancreatic insulin producing cells in a directed differentiation approach. J Visual Exp: JoVE 61:3759Google Scholar
  62. Kaczorowski DJ, Patterson ES, Jastromb WE, Shamblott MJ (2002) Glucose-responsive insulin-producing cells from stem cells. Diabetes/Metab Res Rev 18(6):442–450CrossRefGoogle Scholar
  63. Kahan BWBW, Jacobson LMLM, Hullett DADA, Ochoada JM, Oberley TD, Lang KM, Odorico JS (2003) Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes 52(8):2016–2024PubMedCrossRefGoogle Scholar
  64. Kahn SE, Prigeon RL, Schwartz RS, Fujimoto WY, Knopp RH, Brunzell JD, Porte D (2001) Obesity, body fat distribution, insulin sensitivity and islet β-cell function as explanations for metabolic diversity. J Nutrition 131(2):354–360Google Scholar
  65. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells (Dayt Ohio) 25(11):2837–2844CrossRefGoogle Scholar
  66. Kim S-Y, Lee S-H, Kim B-M, Kim E-H, Min B-H, Bendayan M, Park I-S (2004) Activation of nestin-positive duct stem (NPDS) cells in pancreas upon neogenic motivation and possible cytodifferentiation into insulin-secreting cells from NPDS cells. Dev Dyn: Off Publ Am Assoc Anat 230(1):1–11. doi: 10.1002/dvdy.20012 CrossRefGoogle Scholar
  67. Kim SC, Han DJ, Lee JY (2010) Adipose tissue derived stem cells for regeneration and differentiation into insulin-producing cells. Curr Stem Cell Res Ther 5(2):190–194PubMedCrossRefGoogle Scholar
  68. Klein T, Ling Z, Heimberg H, Madsen OD, Heller RS, Serup P (2003) Nestin is expressed in vascular endothelial cells in the adult human pancreas. J Histochem Cytochem: Off J Histochem Soc 51(6):697–706CrossRefGoogle Scholar
  69. Koblas T, Harman SM, Saudek F (2005) The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud: RDS 2(4):228–234. doi: 10.1900/RDS.2005.2.228 PubMedCrossRefGoogle Scholar
  70. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L (2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9(5):596–603. doi: 10.1038/nm867 PubMedCrossRefGoogle Scholar
  71. Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65(3):385–411PubMedCrossRefGoogle Scholar
  72. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452PubMedCrossRefGoogle Scholar
  73. Ku HT, Zhang N, Kubo A, O’Connor R, Mao M, Keller G, Bromberg JS (2004) Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells (Dayt Ohio) 22(7):1205–1217CrossRefGoogle Scholar
  74. Laikind P (2014) ViaCyte, Inc. Announces FDA acceptance of IND to commence clinical trial of VC-01™ candidate cell replacement therapy for type 1 diabetes. http://viacyte.com/press-releases/viacyte-inc-announces-fda-acceptance-of-ind-to-commence-clinical-trial-of-vc-01-candidate-cell-replacement-therapy-for-type-1-diabetes/. Accessed 13 May 2015
  75. Lechner A, Yang Y-G, Blacken RA, Wang L, Nolan AL, Habener JF (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53(3):616–623PubMedCrossRefGoogle Scholar
  76. Lee J, Han D-J, Kim S-C (2008) In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 375(4):547–551. doi: 10.1016/j.bbrc.2008.08.064 PubMedCrossRefGoogle Scholar
  77. Lee J, Cummings BP, Martin E, Sharp JW, Graham JL, Stanhope KL, Havel PJ, Raybould HE (2012) Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 302(6):R657–R666PubMedCrossRefGoogle Scholar
  78. Levine F, Leibowitz G (1999) Towards gene therapy of diabetes mellitus. Mol Med Today 5(4):165–171PubMedCrossRefGoogle Scholar
  79. Li L, Seno M, Yamada H, Kojima I (2003) Betacellulin improves glucose metabolism by promoting conversion of intraislet precursor cells to beta-cells in streptozotocin-treated mice. Am J Phys Endocrinol Metab 285(3):E577–E583. doi: 10.1152/ajpendo.00120.2003 CrossRefGoogle Scholar
  80. Li Y-Y, Liu H-H, Chen H-L, Li Y-P (2012) Adipose-derived mesenchymal stem cells ameliorate STZ-induced pancreas damage in type 1 diabetes. Biomed Mater Eng 22(1):97–103PubMedGoogle Scholar
  81. Liu GJ, Simpson AM, Swan MA, Tao C, Tuch BE, Russell M, Jovanovic A, Martin DK (2007) UKPMC Funders Group Author manuscript ATP-sensitive potassium channels induced in liver cells after transfection with insulin cDNA and the GLUT2 transporter regulate glucose-stimulated insulin secretion. FASEB J 17(12):1682–1684Google Scholar
  82. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science (New York NY) 292(5520):1389–1394CrossRefGoogle Scholar
  83. MacIsaac ZM, Shang H, Agrawal H, Yang N, Parker A, Katz AJ (2012) Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells. Exp Cell Res 318(4):416–423. doi: 10.1016/j.yexcr.2011.12.002 PubMedCrossRefGoogle Scholar
  84. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638PubMedPubMedCentralCrossRefGoogle Scholar
  85. Matschinsky F, Liang Y, Kesavan P, Wang L, Froguel P, Velho G, Cohen D, Permutt MA, Tanizawa Y, Jetton TL (1993) Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest 92(5):2092–2098PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mazzaccara C, Iafusco D, Liguori R, Ferrigno M, Galderisi A, Vitale D, Simonelli F, Landolfo P, Prisco F, Masullo M, Sacchetti L (2012) Mitochondrial diabetes in children: seek and you will find it. PLoS One 7(4):e34956. doi: 10.1371/journal.pone.0034956 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Minteer D, Marra KG, Rubin JP (2012) Adipose-derived mesenchymal stem cells: biology and potential applications. Advances in biochemical engineering/biotechnology. Springer, BerlinGoogle Scholar
  88. Miyazaki S, Yamato E, Miyazaki J-i (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53(4):1030–1037PubMedCrossRefGoogle Scholar
  89. Mohamad Buang ML, Seng HK, Chung LH, Saim AB, Idrus RBH (2012) In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells. Arch Med Res 43(1):83–88PubMedCrossRefGoogle Scholar
  90. Montanya E (2004) Islet- and stem-cell-based tissue engineering in diabetes. Curr Opin Biotechnol 15(5):435–440. doi: 10.1016/j.copbio.2004.08.011 PubMedCrossRefGoogle Scholar
  91. Mukhi S, Brown DD (2011) Transdifferentiation of tadpole pancreatic acinar cells to duct cells mediated by notch and stromelysin-3. Dev Biol 351(2):311–317. doi: 10.1016/j.ydbio.2010.12.020 PubMedCrossRefGoogle Scholar
  92. Murohara T, Ikeda H, Duan J, Shintani S, Ki S, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105(11):1527–1536. doi: 10.1172/JCI8296 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Naruse K, Hamada Y, Nakashima E, Kato K, Mizubayashi R, Kamiya H, Yuzawa Y, Matsuo S, Murohara T, Matsubara T, Oiso Y, Nakamura J (2005) Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes 54(6):1823–1828PubMedCrossRefGoogle Scholar
  94. Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S, Sharma A (2006) A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 293(2):526–539PubMedPubMedCentralCrossRefGoogle Scholar
  95. Noguchi H, Kaneto H, Weir GC, Bonner-Weir S (2003) PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 52(7):1732–1737PubMedCrossRefGoogle Scholar
  96. Noguchi H, Bonner-Weir S, Wei F-Y, Matsushita M, Matsumoto S (2005) BETA2/NeuroD protein can be transduced into cells due to an arginine- and lysine-rich sequence. Diabetes 54(10):2859–2866PubMedCrossRefGoogle Scholar
  97. Noguchi H, Oishi K, Ueda M, Yukawa H, Hayashi S, Kobayashi N, Levy MF, Matusmoto S (2009) Establishment of mouse pancreatic stem cell line. Cell Transplant 18(5):563–571PubMedGoogle Scholar
  98. Noguchi H, Naziruddin B, Shimoda M, Fujita Y, Chujo D, Takita M, Peng H, Sugimoto K, Itoh T, Tamura Y, Olsen GS, Kobayashi N, Onaca N, Hayashi S, Levy MF, Matsumoto S (2010) Induction of insulin-producing cells from human pancreatic progenitor cells. Transplant Proc 42(6):2081–2083PubMedCrossRefGoogle Scholar
  99. Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J 12(11):4251–4259PubMedPubMedCentralGoogle Scholar
  100. Orlando G, Dominguez-Bendala J, Shupe T, Bergman C, Bitar KN, Booth C, Carbone M, Koch KL, Lerut JP, Neuberger JM, Petersen B, Ricordi C, Atala A, Stratta RJ, Soker S (2013) Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut 62(5):774–786PubMedCrossRefGoogle Scholar
  101. Orlando G, Gianello P, Salvatori M, Stratta RJ, Soker S, Ricordi C, Dominguez-Bendala J (2014) Cell replacement strategies aimed at reconstitution of the beta-cell compartment in type 1 diabetes. Diabetes 63(5):1433–1444PubMedCrossRefGoogle Scholar
  102. Parekh VS, Joglekar MV, Hardikar AA (2009) Differentiation of human umbilical cord blood-derived mononuclear cells to endocrine pancreatic lineage. Differ: Res Biol Divers 78(4):232–240CrossRefGoogle Scholar
  103. Plesner A, Soukhatcheva G, Korneluk RG, Verchere CB (2010) XIAP inhibition of β-cell apoptosis reduces the number of islets required to restore euglycemia in a syngeneic islet transplantation model. Islets 2(1):18–23. doi: 10.4161/isl.2.1.9997 PubMedCrossRefGoogle Scholar
  104. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–129PubMedCrossRefGoogle Scholar
  105. Rackham CL, Chagastelles PC, Nardi NB, Hauge-Evans AC, Jones PM, King AJF (2011) Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia 54(5):1127–1135. doi: 10.1007/s00125-011-2053-4 PubMedCrossRefGoogle Scholar
  106. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Da M (2003) Insulin staining of ES cell progeny from insulin uptake. Science (New York NY) 299(5605):363–363. doi: 10.1126/science.1077838 Google Scholar
  107. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6(3):278–282. doi: 10.1038/73128 PubMedCrossRefGoogle Scholar
  108. Reddi AS, Kuppasani K, Ende N (2010) Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 5(4):356–361PubMedCrossRefGoogle Scholar
  109. Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ, Ao Z, Warnock GL, Kieffer TJ (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61(8):2016–2029. doi: 10.2337/db11-1711 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Robertson RP (2004) Islet transplantation as a treatment for diabetes – a work in progress. N Engl J Med 350(7):694–705. doi: 10.1056/NEJMra032425 PubMedCrossRefGoogle Scholar
  111. Rosenberg L (1995) In vivo cell transformation: neogenesis of beta cells from pancreatic ductal cells. Cell Transplant 4(4):371–383PubMedCrossRefGoogle Scholar
  112. Rosengren AH, Taneera J, Rymo S, Renström E (2009) Bone marrow transplantation stimulates pancreatic β-cell replication after tissue damage. Islets 1(1):10–18PubMedCrossRefGoogle Scholar
  113. Rukstalis JM, Habener JF (2009) Neurogenin3: a master regulator of pancreatic islet differentiation and regeneration. Islets 1(3):177–184. doi: 10.4161/isl.1.3.9877 PubMedCrossRefGoogle Scholar
  114. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JRT, Shapiro AMJ (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54(7):2060–2069PubMedCrossRefGoogle Scholar
  115. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS (2011) Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther: J Am Soc Gene Ther 19(11):2065–2071. doi: 10.1038/mt.2011.173 CrossRefGoogle Scholar
  116. Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I, Goldberg I, Pri-Chen S, Ben-Dor L, Polak-Charcon S, Karasik A, Shimon I, Mor E, Ferber S (2005) Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci U S A 102(22):7964–7969. doi: 10.1073/pnas.0405277102 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schroeder IS, Kania G, Blyszczuk P, Wobus AM (2006) Insulin-producing cells. Methods Enzymol 418:315–333PubMedCrossRefGoogle Scholar
  118. Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz-Eldor J (2004) Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells (Dayt Ohio) 22(3):265–274. doi: 10.1634/stemcells.22-3-265 CrossRefGoogle Scholar
  119. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238. doi: 10.1056/NEJM200007273430401 PubMedCrossRefGoogle Scholar
  120. Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H (2005) Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells (Dayt Ohio) 23(5):656–662CrossRefGoogle Scholar
  121. Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y (2002) Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells (Dayt Ohio) 20(4):284–292. doi: 10.1634/stemcells.20-4-284 CrossRefGoogle Scholar
  122. Simpson AM, Tuch BE, Swan MA, Tu J, Marshall GM (1995) Functional expression of the human insulin gene in a human hepatoma cell line (HEP G2). Gene Ther 2(3):223–231PubMedGoogle Scholar
  123. Simpson AM, Marshall GM, Tuch BE, Maxwell L, Szymanska B, Tu J, Beynon S, Ma S, Camacho M (1997) Gene therapy of diabetes: glucose-stimulated insulin secretion in a human hepatoma cell line (HEP G2ins/g). Gene Ther 4(11):1202–1215. doi: 10.1038/sj.gt.3300527 PubMedCrossRefGoogle Scholar
  124. Sipione S, Eshpeter A, Lyon JG, Korbutt GS, Bleackley RC (2004) Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 47(3):499–508. doi: 10.1007/s00125-004-1349-z PubMedCrossRefGoogle Scholar
  125. Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, Xu X, Grau V, Heimberg H, Bouwens L, Ferrer J (2009) Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 17(6):849–860. doi: 10.1016/j.devcel.2009.11.003 PubMedCrossRefGoogle Scholar
  126. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343(8903):950–951PubMedCrossRefGoogle Scholar
  127. Soria B, Roche E, Berná G, León-Quinto T, Reig JA, Martín F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2):157–162PubMedCrossRefGoogle Scholar
  128. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P (1997) The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386(6623):399–402. doi: 10.1038/386399a0 PubMedCrossRefGoogle Scholar
  129. Street CN, Lakey JRT, Seeberger K, Helms L, Rajotte RV, Shapiro AMJ, Korbutt GS (2004) Heterogenous expression of nestin in human pancreatic tissue precludes its use as an islet precursor marker. J Endocrinol 180(2):213–225PubMedCrossRefGoogle Scholar
  130. Stride A, Hattersley AT (2002) Different genes, different diabetes: lessons from maturity-onset diabetes of the young. Ann Med 34(3):207–216PubMedCrossRefGoogle Scholar
  131. Stumvoll M, Goldstein BJ, van Haeften TW (2010) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365(9467):1333–1346. doi: 10.1016/S0140-6736(05)61032-X CrossRefGoogle Scholar
  132. Sulzbacher S, Schroeder IS, Truong TT, Wobus AM (2009) Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Rev 5(2):159–173PubMedCrossRefGoogle Scholar
  133. Sun B, Roh K-H, Lee S-R, Lee Y-S, Kang K-S (2007) Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure. Biochem Biophys Res Commun 354(4):919–923. doi: 10.1016/j.bbrc.2007.01.069 PubMedCrossRefGoogle Scholar
  134. Takahara H, Fujimura M, Taniguchi S, Hayashi N, Nakamura T, Fujimiya M (2001) Changes in serotonin levels and 5-HT receptor activity in duodenum of streptozotocin-diabetic rats. Am J Physiol Gastrointest Liver Physiol 281(3):G798–G808PubMedGoogle Scholar
  135. Taniguchi H, Fukao K, Nakauchi H (1997) Constant delivery of proinsulin by encapsulation of transfected cells. J Surg Res 70(1):41–45PubMedCrossRefGoogle Scholar
  136. Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. doi: 10.1126/science.282.5391.1145 PubMedCrossRefGoogle Scholar
  137. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Müller B, Zulewski H (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341(4):1135–1140. doi: 10.1016/j.bbrc.2006.01.072 PubMedCrossRefGoogle Scholar
  138. Tolhurst G, Reimann F, Gribble FM (2009) Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol 587(Pt 1):27–32PubMedCrossRefGoogle Scholar
  139. Tsai P-J, Wang H-S, Shyr Y-M, Weng Z-C, Tai L-C, Shyu J-F, Chen T-H (2012) Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J Biomed Sci 19(1):47–47PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tu J, Tuch BE (1997) Expression of glucokinase in glucose-unresponsive human fetal pancreatic islet-like cell clusters. J Clin Endocrinol Metab 82(3):943–948PubMedGoogle Scholar
  141. Tu J, Tuch BE, Si Z (1999) Expression and regulation of glucokinase in rat islet beta- and alpha-cells during development. Endocrinology 140(8):3762–3766PubMedCrossRefGoogle Scholar
  142. Vaca P, Berná G, Martín F, Soria B (2003) Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells. Transplant Proc 35(5):2021–2023PubMedCrossRefGoogle Scholar
  143. Van Pham P, Thi-My Nguyen P, Thai-Quynh Nguyen A, Minh Pham V, Nguyen-Tu Bui A, Thi-Tung Dang L, Gia Nguyen K, Kim Phan N (2014) Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation 87(5):200–208. doi:http://dx.doi.org/10.1016/j.diff.2014.08.001PubMedCrossRefGoogle Scholar
  144. Venkatesan V, Gopurappilly R, Goteti SK, Dorisetty RK, Bhonde RR (2011) Pancreatic progenitors: the shortest route to restore islet cell mass. Islets 3(6):295–301. doi: 10.4161/isl.3.6.17704 PubMedCrossRefGoogle Scholar
  145. Voltarelli JC, Couri CEB, Stracieri ABPL, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KCR, Foss-Freitas MC, Simões BP, Foss MC, Squiers E, Burt RK (2007) Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297(14):1568–1576. doi: 10.1001/jama.297.14.1568 PubMedCrossRefGoogle Scholar
  146. Vrochides D, Paraskevas S, Papanikolaou V (2009) Transplantation for type 1 diabetes mellitus. Whole organ or islets? Hippokratia 13(1):6–8PubMedPubMedCentralGoogle Scholar
  147. Waeber G, Thompson N, Nicod P, Bonny C (1996) Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol (Baltimore Md) 10(11):1327–1334Google Scholar
  148. Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, Guo Y-J, Fu Y-S, Lai M-C, Chen C-C (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells (Dayt Ohio) 22(7):1330–1337CrossRefGoogle Scholar
  149. Wang P, Yigit MV, Medarova Z, Wei L, Dai G, Schuetz C, Moore A (2011) Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60(2):565–571. doi: 10.2337/db10-1400 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Watada H, Kajimoto Y, Umayahara Y, Matsuoka T, Kaneto H, Fujitani Y, Kamada T, Kawamori R, Yamasaki Y (1996) The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes 45(11):1478–1488PubMedCrossRefGoogle Scholar
  151. Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV (2008) Fully automated closed-loop insulin delivery versus Semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31:934. doi: 10.2337/dc07-1967. S.A.W.PubMedCrossRefGoogle Scholar
  152. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168PubMedCrossRefGoogle Scholar
  153. WHO (2015) Diabetes. http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed 10 May 2015
  154. Wu X-H, Liu C-P, Xu K-F, Mao X-D, Zhu J, Jiang J-J, Cui D, Zhang M, Xu Y, Liu C (2007) Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol: WJG 13(24):3342–3349PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wu H, Lu W, Mahato RI (2011) Mesenchymal stem cells as a gene delivery vehicle for successful islet transplantation. Pharm Res 28(9):2098–2109. doi: 10.1007/s11095-011-0434-5 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Xia B, Zhan X-R, Yi R, Yang B (2009) Can pancreatic duct-derived progenitors be a source of islet regeneration? Biochem Biophys Res Commun 383(4):383–385. doi: 10.1016/j.bbrc.2009.03.114 PubMedCrossRefGoogle Scholar
  157. Xu W, Qian H, Zhu W, Chen Y, Shao Q, Sun X, Hu J, Han C, Zhang X (2004) A novel tumor cell line cloned from mutated human embryonic bone marrow mesenchymal stem cells. Oncol Rep 12(3):501–508PubMedGoogle Scholar
  158. Yabe D, Seino Y (2011) Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. Prog Biophys Mol Biol 107(2):248–256PubMedCrossRefGoogle Scholar
  159. Yamamoto T, Yamato E, Taniguchi H, Shimoda M, Tashiro F, Hosoi M, Sato T, Fujii S, Miyazaki JI (2006) Stimulation of cAMP signalling allows isolation of clonal pancreatic precursor cells from adult mouse pancreas. Diabetologia 49(10):2359–2367. doi: 10.1007/s00125-006-0372-7 PubMedCrossRefGoogle Scholar
  160. Yang K-m, A-d L, Mei Y, H-y Z, Li H, Yang H-j (2006) Islet formation and regeneration. Chin Med Sci J Chung-kuo i hsüeh k’o hsüeh tsa chih/Chin Acad Med Sci 21(1):27–32Google Scholar
  161. Yatoh S, Dodge R, Akashi T, Omer A, Sharma A, Weir GC, Bonner-Weir S (2007) Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes 56(7):1802–1809. doi: 10.2337/db06-1670 PubMedCrossRefGoogle Scholar
  162. Yoshida S, Ishikawa F, Kawano N, Shimoda K, Nagafuchi S, Shimoda S, Yasukawa M, Kanemaru T, Ishibashi H, Shultz LD, Harada M (2005) Human cord blood – derived cells generate insulin-producing cells in vivo. Stem Cells (Dayt Ohio) 23(9):1409–1416. doi: 10.1634/stemcells.2005-0079 CrossRefGoogle Scholar
  163. Zalzman M, Gupta S, Giri RK, Berkovich I, Sappal BS, Karnieli O, Zern MA, Fleischer N, Efrat S (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci U S A 100(12):7253–7258. doi: 10.1073/pnas.1136854100 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Zalzman M, Anker-Kitai L, Efrat S (2005) Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54(9):2568–2575PubMedCrossRefGoogle Scholar
  165. Zhang YC, Pileggi A, Agarwal A, Molano RD, Powers M, Brusko T, Wasserfall C, Goudy K, Zahr E, Poggioli R, Scott-jorgensen M, Campbell-thompson M, Crawford JM, Nick H, Flotte T, Ellis TM, Ricordi C, Inverardi L, Atkinson MA (2003) Inhibits diabetes recurrence in syngeneic islet cell transplantation of NOD mice. Diabetes 52:708PubMedCrossRefGoogle Scholar
  166. Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312(13):2454–2464. doi: 10.1016/j.yexcr.2006.04.008 PubMedCrossRefGoogle Scholar
  167. Zheng HT, Deng HC, Huang CJ, Lan NZ, Fang F, Jian R (2007) Co-transfection of GK and mhPINS genes into HepG2 cells confers glucose-stimulated insulin secretion. Cytotherapy 9(6):580–586. doi: 10.1080/14653240701411350 PubMedCrossRefGoogle Scholar
  168. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455(7213):627–632. doi: 10.1038/nature07314 PubMedCrossRefGoogle Scholar
  169. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80(3):267–274PubMedCrossRefGoogle Scholar
  170. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi: 10.1089/107632701300062859 PubMedCrossRefGoogle Scholar
  171. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Müller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50(3):521–533PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia

Personalised recommendations