Skip to main content

Ultramafic Lower-Mantle Mineral Association

  • Chapter
  • First Online:

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The juvenile ultramafic lower mantle is composed of the mineral association: bridgmanite  + ferropericlase + CaSi-perovskite  + free silica. Bridgmanite, with mg = 0.84–0.96 forms two compositional groups: low-Al and high-Al. High-Al bridgmanite is richer in Fe and infers the characteristic of deeper layers in the lower mantle. The crystal structure of bridgmanite is orthorhombic through the entire lower mantle down to the D″ layer. The chemical composition of ferropericlase is different from the predicted one with the magnesium index mg varying from 0.36 to 0.90. Low-Fe ferropericlase has a cubic rocksalt structure, which is stable throughout the entire lower mantle. Iron contents in both ferropericlase and bridgmanite and ferropericlase increase with pressure indicating the increase of Fe concentration in the lower mantle with depth. CaSi-perovskite is remarkably clean in its chemical composition with only minor admixtures of Ti, Al and Fe, but is enriched in trace elements. CaSi-perovskite within the lower mantle has a cubic structure which at low temperatures (in subsolidus conditions) may transfer into a tetragonal or orthorhombic structure. The presence of free silica in the lower mantle was identified in geological samples from all areas. In the upper part of the lower mantle it is represented by stishovite ; at a depth of 1600–1800 km stishovite transforms into the CaCl2-structured polymorph; and at the CMB, into a α-PbO2 phase seifertite. In addition to the major minerals, a variety of other mineral phases occurs in the lower mantle: Mg–Cr–Fe, Ca–Cr and other orthorhombic oxides , jeffbenite , ilmenite , native Ni and Fe, moissanite and some others.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, D. J., & Oganov, A. R. (2006). Ab initio molecular dynamics study of CaSiO3 perovskite at P–T conditions of Earth’s lower mantle. Physical Review B, 73, 184106.

    Article  Google Scholar 

  • Akaogi, M. (2007). Phase transitions of minerals in the transition zone and upper part of the lower mantle. In E. Ohtani (Ed.), Advances in High Pressure Mineralogy (Vol. 421, pp. 1–13). Geological Society of America Memoirs.

    Google Scholar 

  • Akaogi, M., Hamada, Y., Suzuki, T., Kobayashi, M., & Okada, M. (1999). High pressure transitions in the system MgAl2O4–CaAl2O4: A new hexagonal aluminous phase with implication for the lower mantle. Physics of the Earth and Planetary Interiors, 115, 67–77.

    Article  Google Scholar 

  • Akaogi, M., Tanaka, A., & Ito, E. (2002). Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: Phase equilibria, calorimetry and implications for mantle structure. Physics of the Earth and Planetary Interiors, 132, 303–324.

    Article  Google Scholar 

  • Akber-Knutson, S., & Bukowinski, M. S. T. (2004). The energetics of aluminum solubility into MgSiO3 perovskite at lower mantle conditions. Earth and Planetary Science Letters, 220, 317–330. doi:10.1016/S0012-821X(04)00065-2

    Article  Google Scholar 

  • Akber-Knutson, S., Bukowinski, M. S. T., & Matas, J. (2002). On the structure and compressibility of CaSiO3 perovskte. Geophysical Research Letters, 29(3), 1034–1037.

    Article  Google Scholar 

  • Anderson, D. L. (1983). Chemical composition of the mantle. Journal of Geophysical Research, 88, B41–B52. doi:10.1029/Jb088is01p00b41

    Article  Google Scholar 

  • Anderson, D. L. (2002). The case for irreversible chemical stratification of the mantle. International Geology Review, 44(2), 97–116.

    Article  Google Scholar 

  • Andrault, D. (2001). Evaluation of (Mg, Fe) partitioning between silicate perovskite and magnesiowüstite up to 120 GPa and 2300 K. Journal of Geophysical Research, 106(B2), 2079–2087.

    Article  Google Scholar 

  • Andrault, D., Angel, R. J., Mosenfelder, J. I., & Le Bihan, T. (2003). Equation of state of stishovite to lower mantle pressures. American Mineralogist, 88, 301–307.

    Article  Google Scholar 

  • Andrault, D., Bolfan-Casanova, N., Bouhifd, M. A., Guignot, N., & Kawamoto, T. (2007). The role of Al-defects on the equation of state of Al–(Mg, Fe)SiO3 perovskite. Earth and Planetary Science Letters, 263, 167–179. doi:10.1016/j.epsl.2007.08.012

    Article  Google Scholar 

  • Andrault, D., Bolfan-Casanova, N., & Guignot, N. (2001). Equation of state of lower mantle (Al, Fe)-MgSiO3 perovskite. Earth and Planetary Science Letters, 193(3–4), 501–508.

    Article  Google Scholar 

  • Andrault, D., Fiquet, G., Guyot, F., & Hanfland, M. (1998a). Pressure-induced Landau-type transition in stishovite. Science, 282(5389), 720–724.

    Article  Google Scholar 

  • Andrault, D., Neuville, D. R., Flank, A. M., & Wang, Y. (1998b). Cation sites in Al-rich MgSiO3 perovskites. American Mineralogist, 83, 1045–1053.

    Article  Google Scholar 

  • Andrault, D., Pesce, G., Bouhifd, M. A., Bolfan-Casanova, N., Hénot, J.-M., & Mezouar, M. (2014). Melting of subducted basalt at the core-mantle boundary. Science, 344(6186), 892–895.

    Article  Google Scholar 

  • Andrault, D., Petitgirard, S., Lo Nigro, G., Devidal, J.-L., Veronesi, G., Garbarino, G., et al. (2012). Solid-liquid iron partitioning in Earth’s deep mantle. Nature, 487, 354–357.

    Article  Google Scholar 

  • Antonangeli, D., Siebert, J., Aracne, C. M., Farber, D. L., Bosak, A., Hoesch, M., et al. (2011). Spin crossover in ferropericlase at high pressure: A seismologically transparent transition? Science, 331, 64–67.

    Article  Google Scholar 

  • Anzolini, C., Angel, R. J., Merlini, M., Derzsi, M., Tokár, K., Milani, S., et al. (2016a). Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos, 265, 138–147. doi:10.1016/j.lithos.2016.09.025

    Article  Google Scholar 

  • Anzolini, C., Drewitt, J., Lord, O. T., Walter, M. J., & Nestola, F. (2016b). New stability field of jeffbenite (ex-“TAPP”): Possibility of super-deep origin. AGU Fall Meeting Abstract MR33A-2675, 1 p.

    Google Scholar 

  • Armstrong, L. S., & Walter, M. J. (2012). Tetragonal almandine pyrope phase (TAPP): Retrograde Mg-perovskite from subducted oceanic crust? European Journal of Mineralogy, 24(4), 587–597.

    Article  Google Scholar 

  • Armstrong, L. S., Walter, M. J., Tuff, J. R., Lord, O. T., Lennie, A. R., Kleppe, F. R., et al. (2012). Perovskite phase relations in the system CaO–MgO–TiO2–SiO2 and implications for deep mantle lithologies. Journal of Petrology, 53(3), 611–635. doi:10.1093/petrology/egr073

    Article  Google Scholar 

  • Asahara, Y., Hirose, K., Ohishi, Y., Hirao, N., Ozawa, H., & Murakami, M. (2013). Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: Implications for the seismic features of subducting slabs in the mid-mantle. American Mineralogist, 98(11–12), 2053–2062. doi:10.2138/am.2013.4145

    Article  Google Scholar 

  • Auzende, A.-L., Badro, J., Ryerson, F. J., Weber, P. K., Fallon, S. J., Addad, A., et al. (2008). Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry. Earth and Planetary Science Letters, 269, 164–174. doi:10.1016/j.epsl.2008.02.001

    Article  Google Scholar 

  • Badro, J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V. V., Vankó, G., et al. (2003). Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300(5620), 789–791. doi:10.1126/science.1081311

    Article  Google Scholar 

  • Barnes, S. J., & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302.

    Article  Google Scholar 

  • Bass, J. D. (2008). Recent progress in studies of the elastic properties of earth materials. Physics of the Earth and Planetary Interiors, 170, 207–209.

    Article  Google Scholar 

  • Bassett, W. A. (2001). The birth and development of laser heating in DACs. Review of Scientific Instruments, 72, 1270–1272.

    Article  Google Scholar 

  • Becerro, A. I., McCammon, C. A., Langenhorst, F., Angel, R. J., & Seifert, F. (1999). Oxygen vacancy ordering in CaTiO3–CaFeO2.5. Phase Transitions, 69, 133–146.

    Article  Google Scholar 

  • Belonoshko, A. B., Dubrovinsky, L. S., & Dubrovinsky, N. A. (1996). A new high-pressure silica phase obtained by molecular dynamics. American Mineralogist, 81, 785–788.

    Article  Google Scholar 

  • Bina, C. R. (2010). Scale limits of free-silica seismic scatterers in the lower mantle. Physics of the Earth and Planetary Interiors, 183, 110–114.

    Article  Google Scholar 

  • Bindi, L., Dymshits, A. M., Bobrov, A. V., Litasov, K. D., Shatsky, A. F., Ohtani, E., et al. (2011). Crystal chemistry of sodium in the Earth’s interior: The structure of Na2MgSi5O12 synthesized at 17.5 GPa and 1700 °C. American Mineralogist, 96(2–3), 447–450.

    Article  Google Scholar 

  • Bindi, L., Tamarova, A., Bobrov, A. V., Sirotkina, E. A., Tschauner, O., Walter, M. J., et al. (2016). Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle. American Mineralogist, 101, 483–486.

    Article  Google Scholar 

  • Bläß, U. W., Langenhorst, F., Frost, D. J., & Seifert, F. (2007). Oxygen deficient perovskites in the system CaSiO3–CaAlO2.5 and implications for the Earth’s interior. Physics and Chemistry of Minerals, 34, 363–376.

    Article  Google Scholar 

  • Bobrov, A. V., Kojitani, H., Akaogi, M., & Litvin, Yu A. (2008a). Phase relations on the diopside-hedenbergite-jadeite join up to 24 GPa and stability of Na-bearing majorite garnet. Geochimica et Cosmochimica Acta, 72(9), 2392–2408.

    Article  Google Scholar 

  • Bobrov, A. V., Litvin, Yu A, Bindi, L., & Dymshits, A. M. (2008b). Phase relations and formation of sodium-rich majorite garnet in the system Mg3Al2Si3O12–Na2MgSi5O12 at 7.0 and 8.5 GPa. Contributions to Mineralogy and Petrology, 156(2), 243–257.

    Article  Google Scholar 

  • Bolfan-Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. (2009). Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K. Physics of the Earth and Planetary Interiors, 174, 70–77. doi:10.1016/j.pepi.2008.06.024

    Article  Google Scholar 

  • Boujibar, A., Bolfan-Casanova, N., Andrault, D., Bouhifd, M. A., & Trcera, N. (2016). Incorporation of Fe2+ and Fe3+ in bridgmanite during magma ocean crystallization. American Mineralogist, 101, 1560–1570. doi:10.2138/am-2016-5561

    Article  Google Scholar 

  • Brenker, F. E., Stachel, T., & Harris, J. W. (2002). Exhumation of lower mantle inclusions in diamond: ATEM investigation of retrograde phase transitions, reactions and exsolution. Earth and Planetary Science Letters, 198, 1–9.

    Article  Google Scholar 

  • Brodholt, J. P. (2000). Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth’s mantle. Nature, 407, 620–622.

    Article  Google Scholar 

  • Bulanova, G. P., Smith, C. B., Kohn, S. C., Walter, M. J., Gobbo, L., & Kearns, S. (2008). Machado River, Brazil—A newly recognised ultradeep diamond occurrence. In 9th International Kimberlite Conference. Extended Abstract No. 9IKC-A-00233.

    Google Scholar 

  • Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S., Blundy, J., et al. (2010). Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 159(4), 489–510. doi:10.1007/s00410-010-0490-6

    Article  Google Scholar 

  • Burnham, A. D., Bulanova, G. P., Smith, C. B., Whitehead, S. C., Kohn, S. C., Gobbo, L., et al. (2016). Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos, 265, 199–213. doi:10.1016/j.lithos.2016.05.022

    Article  Google Scholar 

  • Cammarano, F., & Romanowicz, B. (2007). Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data. Proceedings of the National Academy of the U.S.A., 104(22), 9139–9144.

    Article  Google Scholar 

  • Caracas, R., Wentzcovitch, R., Price, G. D., & Brodholt, J. (2005). CaSiO3 perovskite at lower mantle pressures. Geophysical Research Letters, 32, L06306. doi:10.1029/2004GL022144

    Google Scholar 

  • Carpenter, M. A. (2006). Elastic properties of minerals and the influence of phase transitions. American Mineralogist, 91, 229–246.

    Article  Google Scholar 

  • Carpenter, M. A., Hemley, R. J., & Mao, H.-K. (2000). High-pressure elasticity of stishovite and the P4 2 /mnmPnnm phase transition. Journal of Geophysical Research, 105, 10807–10816.

    Article  Google Scholar 

  • Carpenter, M. A., & Salje, E. K. H. (1998). Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 10, 693–812.

    Article  Google Scholar 

  • Cassidy, K. F., Groves, D. I., & Binns, R. A. (1988). Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks from Western Australia. Canadian Mineralogist, 26(4), 999–1012.

    Google Scholar 

  • Chao, E. C. T., Fahey, J. J., Littler, J., & Milton, D. J. (1962). Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Geophysical Research, 67, 419–421.

    Article  Google Scholar 

  • Chen, M., Shu, J., & Mao, H.-K. (2008). Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin, 53, 3341–3345.

    Google Scholar 

  • Chen, M., Shu, J., Mao, H.-K., Xie, X., & Hemley, R. J. (2003a). Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of the U.S.A., 100, 14651–14654.

    Article  Google Scholar 

  • Chen, M., Shu, J., Xie, X., & Mao, H.-K. (2003b). Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et Cosmochimica Acta, 67, 3937–3942.

    Article  Google Scholar 

  • Chinn, J. L., Milledge, H. J., & Gurney, J. J. (1998). Diamonds and inclusions from the Jagersfontein kimberlite. In Seventh International Kimberlite Conference Extended Abstracts (pp. 156–157), Cape Town.

    Google Scholar 

  • Chizmeshya, A. V. G., Wolf, G. H., & McMillan, P. F. (1996). First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite. Geophysical Research Letters, 23(20), 2725–2728.

    Article  Google Scholar 

  • Chizmeshya, A. V. G., Wolf, G. H., & McMillan, P. F. (1998). Correction to “First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite”. Geophysical Research Letters, 25(5), 711.

    Article  Google Scholar 

  • Chung, J. I., & Kagi, H. (2002). High concentration of water in stishovite in the MORB system. Geophysical Research Letters, 29(21), 2020. doi:10.1029/2002GL015579

    Article  Google Scholar 

  • Civet, F., Thëbault, E., Verhoeven, O., Langlais, B., & Saturnino, D. (2015). Electrical conductivity of the Earth’s mantle from the first Swarm magnetic field measurements. Geophysical Research Letters, 42, 3338–3346.

    Article  Google Scholar 

  • Cohen, R. E. (1987). Calculation of elasticity and high pressure instabilities in corundum and stishovite with the potential induced breathing model. Geophysical Research Letters, 14(1), 37–40.

    Article  Google Scholar 

  • Cohen, R. E. (1991). Bonding and elasticity of stishovite SiO2 at high pressure: Linearized augmented plane wave calculations. American Mineralogist, 76, 733–742.

    Google Scholar 

  • Coppari, F., Smith, R. F., Eggert, J. H., Wang, J., Rygg, J. R., Lazicki, A., et al. (2013). Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geoscience, 6, 926–929.

    Article  Google Scholar 

  • Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C., & Frost, D. J. (2005). Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimica et Cosmochimica Acta, 146, 249–260.

    Google Scholar 

  • Corgne, A., & Wood, B. J. (2002). CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophysical Research Letters, 29. doi:10.1029/2001GL014398

  • Crowhurst, J., Brown, J., Goncharov, A., & Jacobsen, S. (2008). Elasticity of (Mg, Fe)O through the spin transition of iron in the lower mantle. Science, 319, 451–453. doi:10.1126/science.1149606

    Article  Google Scholar 

  • Daniel, I., Bass, J. D., Fiquet, G., Cardon, H., Zhang, J. Z., & Hanfland, M. (2004). Effect of aluminium on the compressibility of silicate perovskite. Geophysical Research Letters, 31, L15608.

    Article  Google Scholar 

  • Daniel, I., Cardon, H., Fiquet, G., Guyot, F., & Mezouar, M. (2001). Equation of state of Al-bearing perovskite to lower mantle pressure conditions. Geophysical Research Letters, 28(19), 3789–3792.

    Article  Google Scholar 

  • Davies, R. M., Griffin, W. L., O’Reilly, S. Y., & Doyle, B. J. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55. doi:10.1016/j.lithos.2004.04.016

    Article  Google Scholar 

  • Dera, P., Prewitt, C. T., Boctor, N. Z., & Hemley, R. J. (2002). Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. American Mineralogist, 87, 1018–1023.

    Article  Google Scholar 

  • Deschamps, F., & Khan, A. (2016). Electrical conductivity as a constraint on lower mantle thermo-chemical structure. Earth and Planetary Science Letters, 450(2016), 108–119. doi:10.1016/j.epsl.2016.06.027

    Article  Google Scholar 

  • Dorfman, S. M., Meng, Y., Prakapenka, V. B., & Duffy, T. S. (2013). Effects of Fe-enrichment on the equation of state and stability of (Mg, Fe)SiO3 perovskite. Earth and Planetary Science Letters, 361, 249–257. doi:10.2138/am-2015-5190

    Article  Google Scholar 

  • Dorfman, S. M., Prakapenka, V. B., Meng, Y., & Duffy, T. S. (2012). Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. Journal of Geophysical Research, 117, B08210.

    Google Scholar 

  • Driver, K. P., Cohen, R. E., Wu, Z., Militzer, B., Ríos, P. L., Towler, M. D., et al. (2010). Quantum Monte Carlo for minerals at high pressures: Phase stability, equations of state, and elasticity of silica. Proceedings of the National Academy of the U.S.A., 107, 9519–9524. doi:10.1073/pnas.0912130107

    Article  Google Scholar 

  • Dubrovinsky, L. S., Dubrovinskaia, N. A., Annersten, H., Halenius, E., & Harryson, H. (2001a). Stability of (Mg0.5Fe0.5)O and (Mg0.8 Fe0.2)O magnesiowüstites in the lower mantle. European Journal of Mineralogy, 13(5), 857–861.

    Article  Google Scholar 

  • Dubrovinsky, L. S., Dubrovinskaia, N. A., Prakapenka, V., Seifert, F., Langenhorst, F., Dmitriev, V., et al. (2003). High-pressure and high-temperature polymorphism in silica. High Pressure Research, 23(1–2), 35–39.

    Article  Google Scholar 

  • Dubrovinsky, L. S., Dubrovinskaia, N. A., Saxena, S. K., Annersten, H., Halenius, E., Harryson, H., et al. (2000). Stability of ferropericlase in the lower mantle. Science, 289(5478), 430–432.

    Article  Google Scholar 

  • Dubrovinsky, L. S., Dubrovinskaia, N. A., Saxena, S. K., Tutti, F., Rekhi, S., Le Bihan, T., et al. (2001b). Pressure-induced transformation of cristobalite. Chemical Physics Letters, 333(3–4), 264–270.

    Article  Google Scholar 

  • Dubrovinsky, L. S., Saxena, S. K., Lazor, P., Ahuja, R., Eriksson, O., Wills, J. M., et al. (1997). Experimental and theoretical identification of a new high-pressure phase of silica. Nature, 388, 362–365.

    Article  Google Scholar 

  • Duffy, T. S., Hemley, R. J., & Mao, H.-K. (1995). Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. Physical Review Letters, 74, 1371–1375.

    Article  Google Scholar 

  • Dymshits, A. M., Bobrov, A. V., Litasov, K. D., Shatsky, A. F., Ohtani, E., & Litvin, Yu A. (2010). Experimental study of the pyroxene-garnet phase transition in the Na2MgSi5O12 system at pressures of 13–20 GPa: First syntheses of sodium majorite. Doklady Earth Sciences, 434(1), 1263–1266.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earthmodel. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Article  Google Scholar 

  • El Goresy, A., Dera, P., Sharp, T. G., Prewitt, C. T., Chen, M., Dubrovinsky, L., et al. (2008). Seifertite, a dense or-thorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy, 20, 523–528.

    Article  Google Scholar 

  • El Goresy, A., Dubrovinsky, L., Sharp, T. G., Saxena, S. K., & Chen, M. (2000). A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science, 288(5471), 1632–1634.

    Article  Google Scholar 

  • Elsdon, R. (1975). Manganoan ilmenite from the Leinster granite, Ireland. Mineralogical Magazine, 40(312), 419–421.

    Article  Google Scholar 

  • Fei, Y. (1996). Crystal chemistry of FeO at high pressure and temperature (pp. 243–254). Geochemical Society Special Publication 5.

    Google Scholar 

  • Fei, Y., & Bertka, C. M. (1999). Phase transitions in the Earth’s mantle and mantle mineralogy. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 189–207). Geochemical Society Special Publication No. 6.

    Google Scholar 

  • Fei, Y., & Mao, H. K. (1994). In situ determination of the NiAs phase of FeO at high pressure and temperature. Science, 266(5191), 1678–1680.

    Article  Google Scholar 

  • Fei, Y. W., Wang, Y. B., & Finger, L. W. (1996). Maximum solubility of FeO in (Mg, Fe)SiO3 perovskite as a function of temperature at 26 GPa: Implication for FeO content in the lower mantle. Journal of Geophysical Research, 101, 11525–11530.

    Article  Google Scholar 

  • Finger, L. W., & Conrad, P. G. (2000). The crystal structure of “Tetragonal Almandine-Pyrope Phase” (TAPP): A reexamination. American Mineralogist, 85, 1804–1807.

    Article  Google Scholar 

  • Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., & Le Bihan, T. (2000). Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophysical Research Letters, 27, 21–24.

    Article  Google Scholar 

  • Fischer, R. A., & Campbell, A. J. (2010). High pressure melting of wüstite. American Mineralogist, 95, 1473–1477.

    Article  Google Scholar 

  • Fischer, R. A., Campbell, A. J., Lord, O. T., Shofner, G. A., Dera, P., & Prakapenka, V. B. (2011a). Phase transition and metallization of FeO at high pressures and temperatures. Geophysical Research Letters, 38, L24301. doi:10.1029/2011GL049800

    Google Scholar 

  • Fischer, R. A., Campbell, A. J., Shofner, G. A., Lord, O. T., Dera, P., & Prakapenka, V. P. (2011b). Equation of state and phase diagram of FeO. Earth and Planetary Science Letters, 304, 496–502.

    Article  Google Scholar 

  • Flynn, G. J., Nittler, L. R., & Engrand, C. (2016). Composition of cosmic dust: Sources and implications for the early Solar system. Elements, 12(6), 177–183.

    Article  Google Scholar 

  • Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.

    Article  Google Scholar 

  • Frost, D. J., & McCammon, C. A. (2008). The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420. doi:10.1146/annurev.earth.36.031207.124322

    Article  Google Scholar 

  • Frost, D. J., & Myhill, R. (2016). Chemistry of the lower mantle. In H. Terasaki & R. A. Fischer (Eds.), Deep Earth; Physics and Chemistry of the Lower Mantle and Core: Vol. 217. Geophysical monograph (pp. 225–240).

    Google Scholar 

  • Fukui, H., Yoneda, A., Nakatsuka, A., Tsujino, N., Kamada, S., Ohtani, E., et al. (2016). Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle. Scientific Reports, 6, 33337. doi:10.1038/srep33337

    Article  Google Scholar 

  • Funamori, N., Jeanloz, R., Miyajima, N., & Fujino, K. (2000). Mineral assemblages of basalt in the lower mantle. Journal of Geophysical Research, 105(B11), 26037–26043.

    Article  Google Scholar 

  • Funamori, N., Jeanloz, R., Nguyen, J. H., Kavner, A., Caldwell, W. A., Fiujino, K., et al. (1998). High-pressure transformations in MgAl2O4. Journal of Geophysical Research, 103(B9), 20813–20818.

    Article  Google Scholar 

  • Gaspar, J. C., & Wyllie, P. J. (1984). The alleged kimberlite-carbonatite relationship: Evidence from ilmenite and spinel from Premier and Wesselton mines and the Bentfontein sill, South Africa. Contributions Mineralogy and Petrology, 85(2), 133–140.

    Article  Google Scholar 

  • Gasparik, T., Wolf, K., & Smith, C. M. (1994). Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. American Mineralogist, 79(11–12), 1219–1222.

    Google Scholar 

  • Grocholski, B., Shim, S. H., & Prakapenka, V. B. (2013). Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. Journal of Geophysical Research: Solid Earth, 118(9), 4745–4757. doi:10.1002/jgrb.50360

    Google Scholar 

  • Gu, T., Li, M., McCammon, C., & Lee, K. K. M. (2016). Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nature Geoscience, 9, 723–729. doi:10.1038/NGEO2772

    Article  Google Scholar 

  • Guyot, F., Madon, M., & Poirier, J.-P. (1988). X-ray microanalysis of high pressure/high temperature phases synthesized from natural olivine in the diamond–anvil cell. Earth and Planetary Science Letters, 90, 52–64.

    Article  Google Scholar 

  • Harris, J. W., Hutchison, M. T., Hursthouse, M., Light, M., & Harte, B. (1997). A new tetragonal silicate mineral occurring as inclusions in lower mantle diamonds. Nature, 387(6632), 486–488.

    Article  Google Scholar 

  • Harte, B. (2010). Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74(2), 189–215.

    Article  Google Scholar 

  • Harte, B., & Cayzer, N. (2007). Decompression and unmixing of crystals included in diamonds from the mantle transition zone. Physics and Chemistry of Minerals, 34, 647–656.

    Article  Google Scholar 

  • Harte, B., & Harris, J. W. (1994). Lower mantle mineral association preserved in diamonds. Mineralogical Magazine, 58A, 384–385.

    Article  Google Scholar 

  • Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R., & Wilding, M. C. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 125–153). Geochemical Society Special Publication No. 6.

    Google Scholar 

  • Harte, B., & Hudson, N. F. C. (2013). Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. In Proceedings of the 10th International Kimberlite Conference (Vol. 1, pp. 235–254). Special Issue of the Journal of the Geological Society of India.

    Google Scholar 

  • Hayman, P. C., Kopylova, M. G., & Kaminsky, F. V. (2005). Lower mantle diamonds from Rio Soriso (Juina, Brazil). Contributions to Mineralogy and Petrology, 149(4), 430–445. doi:10.1007/s00410-005-0657-8

    Article  Google Scholar 

  • Hemley, R. J., Prewitt, C. T., & Kingma, K. J. (1994) High-pressure behavior of silica. In P. J. Heaney & C. T. Prewitt (Eds.), Silica: Physical behavior, geochemistry and materials applications. Reviews in mineralogy (Vol. 29, pp. 41–82).

    Google Scholar 

  • Hemley, R. J., Shu, J., Carpenter, M. A., Hu, J., Mao, H. K., & Kingma, K. J. (2000). Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527–532.

    Article  Google Scholar 

  • Hernández, E. R., Alfe, D., & Brodholt, J. (2013). The incorporation of water into lowermantle perovskites: A first-principles study. Earth and Planetary Science Letters, 364, 37–43. doi:10.1016/j.epsl.2013.01.005

    Article  Google Scholar 

  • Hirose, K., Fei, Y. W., Ma, Y. Z., & Mao, H. K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397(6714), 53–56.

    Article  Google Scholar 

  • Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237, 239–251.

    Article  Google Scholar 

  • Horiuchi, H., Ito, E., & Weidner, D. J. (1987). Perovskite-type MgSiO3: Single-crystal X-ray diffraction. American Mineralogist, 72, 357–360.

    Google Scholar 

  • Hsu, H., Yu, Y. G., & Wentzcovitch, R. M. (2012). Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth and Planetary Science Letters, 359–360, 34–39.

    Article  Google Scholar 

  • Hummer, D. R., & Fei, Y. (2012). Synthesis and crystal chemistry of Fe3+-bearing (Mg, Fe3+)(Si, Fe3+)O3 perovskite. American Mineralogist, 97, 1915–2012.

    Article  Google Scholar 

  • Hutchison, M. T. (1997). Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions (Unpublished Ph.D. thesis). University of Edinburgh, UK. Vol. 1, 340 pp., Vol. 2 (Tables and Appendices), 306 pp.

    Google Scholar 

  • Hutchison, M. T., Hurtshouse, M. B., & Light, M. E. (2001). Mineral inclusions in diamonds: Associations and chemical distinctions around the 670-km discontinuity. Contributions to Mineralogy and Petrology, 142(2), 119–126.

    Article  Google Scholar 

  • Irifune, T. (1994). Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature, 370, 131–133.

    Article  Google Scholar 

  • Irifune, T., Koizumi, T., & Ando, J. I. (1996). An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Physics of the Earth and Planet Interior, 96(3–4), 147–157.

    Article  Google Scholar 

  • Irifune, T., & Ringwood, A. E. (1993). Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117(1–2), 101–110.

    Article  Google Scholar 

  • Irifune, T., Shinmei, T., McCammon, C. A., Miyajima, N., Rubie, D. C., & Frost, D. J. (2010). Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327(5962), 193–195. doi:10.1126/science.1181443

    Article  Google Scholar 

  • Irifune, T., & Tsuchiya, T. (2007). Mineralogy of the Earth—Phase transitions and mineralogy of the lower mantle. In G. D. Price & G. Schubert (Eds.), Treatise on geophysics. Mineral physicas (pp. 33–62). Elsevier.

    Google Scholar 

  • Ishii, T., Hiroshi Kojitani, H., Tsukamoto, S., Fujino, K., Mori, D., Inaguma, Y., et al. (2014). High-pressure phase transitions in FeCr2O4 and structure analysis of new postspinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. American Mineralogist, 99, 1788–1797.

    Article  Google Scholar 

  • Ito, E., Akaogi, M., Topor, L., & Navrotsky, A. (1990). Negative pressure-temperature slopes for reactions forming MgSiO3 from calorimetry. Science, 249, 1275–1278.

    Article  Google Scholar 

  • Ito, E., & Matsui, Y. (1978). Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth and Planetary Science Letters, 38, 443–450.

    Article  Google Scholar 

  • Ito, E., & Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8), 10637–10646.

    Article  Google Scholar 

  • Jackson, I., Khanna, S. K., Revcolevschi, A., & Berthon, J. (1990). Elasticity, shear-mode softening and high-pressure polymorphism of wüstite (Fe1−xO). Journal of Geophysical Research, 95, 21671–21685.

    Article  Google Scholar 

  • Jackson, J. M., Sinogeikin, S. V., Jacobsen, S. D., Reichmann, H. J., Mackwell, S. J., & Bass, J. D. (2006). Single-crystal elasticity and sound velocities of (Mg0.94Fe0.06)O ferropericlase to 20 GPa. Journal of Geophysical Research, 111, B09203.

    Article  Google Scholar 

  • Jackson, J. M., Zhang, J., & Bass, J. D. (2004). Sound velocities and elasticity of aluminous MgSiO3 perovskite: Implications for aluminum heterogeneity in Earth’s lower mantle. Geophysical Research Letters, 31(10), L10614.

    Article  Google Scholar 

  • Jacobsen, S. D., Reichmann, H. J., Spetzler, H., Mackwell, S. J., Smyth, J. R., Angel, R. J., et al. (2002). Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. Journal of Geophysical Research, 107, 5867–5871.

    Article  Google Scholar 

  • Javoy, M. (1995). The integral enstatite chondrite model of the Earth. Geophysical Research Letters, 22, 2219–2222.

    Article  Google Scholar 

  • Javoy, M., Kaminski, E., Guyot, F., Andrault, D., Sanloup, C., Moreira, M., et al. (2010). The chemical composition of the Earth: Enstatite chondrite models. Earth and Planetary Science Letters, 293(3–4), 259–268.

    Article  Google Scholar 

  • Jeanloz, R., & Ahrens, T. J. (1980). Equations of state of FeO and CaO. Geophysical Journal of the Royal Astronomical Society, 62, 505–528.

    Article  Google Scholar 

  • Jiang, F., Gwanmesia, G. D., Dyuzheva, T. I., & Duffy, T. S. (2009). Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Physics of the Earth and Planetary Interiors, 172(3–4), 235–240. doi:10.1016/j.pepi.2008.09.017

    Article  Google Scholar 

  • Joswig, W., Stachel, T., Harris, J. W., Baur, W. H., & Brey, G. P. (1999). New Ca-silicate inclusions in diamonds—Tracers from the lower mantle. Earth and Planetary Science Letters, 173(1–2), 1–6.

    Article  Google Scholar 

  • Jung, D. Y., & Oganov, A. R. (2005). Ab initio study of the high-pressure behavior of CaSiO3 perovskite. Physics and Chemistry of Minerals, 32, 146–153. doi:10.1007/s00269-005-0453-z

    Article  Google Scholar 

  • Kaercher, P., Speziale, S., Miyagi, L., Kanitpanyacharoen, W., & Wenk, H.-R. (2012). Crystallographic preferred orientation in wüstite (FeO) through the cubic-to-rhombohedral phase transition. Physical Chemistry Minerals, 39, 613–626. doi:10.1007/s00269-012-0516-x

    Article  Google Scholar 

  • Kaminski, E., & Javoy, M. (2013). A two-stage scenario for the formation of the Earth’s mantle and core. Earth and Planetary Science Letters, 365, 97–107.

    Article  Google Scholar 

  • Kaminski, E., & Javoy, M. (2015). The composition of the Deep Earth. In A. Khan & F. Deschamps (Eds.), The Earth’s heterogeneous mantle (pp. 303–328). Berlin: Springer.

    Google Scholar 

  • Kaminsky, F. V. (2012). Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110(1–4), 127–147.

    Article  Google Scholar 

  • Kaminsky, F. V., & Belousova, E. A. (2009). Manganoan ilmenite as kimberlite/diamond indicator mineral. Russian Geology and Geophysics, 50(10), 1212–1220.

    Article  Google Scholar 

  • Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., Araujo, D., & Griffin, W. L. (2009a). Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842.

    Article  Google Scholar 

  • Kaminsky, F. V., & Lin, J.-F. (2017). Iron partitioning in natural lower-mantle minerals: Toward a chemically heterogeneous lower mantle. American Mineralogist, 102(4), 824–832. doi:10.2138/am-2017-5949.

  • Kaminsky, F. V., Ryabchikov, I. D., McCammon, C., Longo, M., Abakumov, A. M., Turner, S., et al. (2015a). Oxidation potential in the Earth’s lower mantle as recorded from ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 417, 49–56.

    Article  Google Scholar 

  • Kaminsky, F. V., Ryabchikov, I. D., & Wirth, R. (2016). A primary natrocarbonatitic association in the Deep Earth. Mineralogy and Petrology, 110(2–3), 387–398. doi:10.1007/s00710-015-0368-4

    Article  Google Scholar 

  • Kaminsky, F., & Wirth, R. (2017). Nitride, carbonitride and nitrocarbide inclusions in lower-mantle diamonds: A key to the balance of nitrogen in the Earth. European Geosciences Union General Assembly Abstract No. EGU2017-1751, Vienna, Austria.

    Google Scholar 

  • Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., & Thomas, R. (2009b). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.

    Article  Google Scholar 

  • Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015b). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.3749/canmin.1400070

    Article  Google Scholar 

  • Kaminsky, F. V., Zakharchenko, O. D., Channer, D. M. D., Blinova, G. K., & Bulanova, G. P. (1997). Diamonds from the Guaniamo area, Bolivar state, Venezuela. In Memorias del VIII Congreso Geologico Venezolana, Soc Venezolana de Geologia (pp. 427–430).

    Google Scholar 

  • Kaminsky, F. V., Zakharchenko, O. D., Davies, R., Griffin, W. L., Khachatryan-Blinova, G. K., & Shiryaev, A. A. (2001). Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753.

    Article  Google Scholar 

  • Kaminsky, F. V., Zakharchenko, O. D., Griffin, W. L., Channer, D. M. D., & Khachatryan-Blinova, G. K. (2000). Diamond from the Guaniamo area, Venezuela. Canadian Mineralogist, 38(6), 1347–1370.

    Article  Google Scholar 

  • Kantor, A. P., Jacobsen, S. D., Kantor, I Yu., Dubrovinsky, L. S., McCammon, C. A., Reichmann, H. J., et al. (2004). Pressure-induced magnetization in FeO: Evidence from elasticity and Mössbauer spectroscopy. Physical Review Letters, 93, 215502.

    Article  Google Scholar 

  • Karki, B., Stixrude, L., & Crain, J. (1997a). Ab initio elasticity of three high-pressure polymorphs of silica. Geophysical Research Letters, 24(24), 3269–3272.

    Article  Google Scholar 

  • Karki, B. B., Warren, M. C., Stixrude, L., Ackland, C. J., & Crain, J. (1997b). Ab initio studies of high-pressure structural transformations in silica. Physical Review B, 55, 3465–3471.

    Article  Google Scholar 

  • Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S., & Baroni, S. (2001). First principles thermoelasticity of MgSiO3-perovskite; consequences for the inferred properties of the lower mantle. Geophysical Research Letters, 28(14), 2699–2702.

    Article  Google Scholar 

  • Katsura, T., & Ito, E. (1996). Determination of Fe–Mg partitioning between perovskite and magnesiowüstite. Geophysical Research Letters, 23(16), 2005–2008.

    Article  Google Scholar 

  • Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., & Ito, E. (2010). Adiabatic temperature profile in the mantle. Physics of the Earth and Planetary Interiors, 183, 212–218. doi:10.1016/j.pepi.2010.07.001

    Article  Google Scholar 

  • Kesson, S. E., & Fitz Gerald, J. D. (1991). Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowustite: Implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth and Planetary Science Letters, 111, 229–240.

    Article  Google Scholar 

  • Kesson, S. E., Fitz Gerald, J. D., O’Neill, H., St, C., & Shelley, J. M. G. (2002). Partitioning of iron between magnesian silicate perovskite and magnesiowüstite at about 1 Mbar. Physics of the Earth and Planetary Interiors, 131, 295–310.

    Article  Google Scholar 

  • Kesson, S. E., Fitz Gerald, J. D., & Shelley, J. M. (1998). Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393(6682), 252–255.

    Article  Google Scholar 

  • Kesson, S. E., Fitz Gerald, J. D., Shelley, J. M. G., & Withers, R. L. (1995). Phase relations, structure and crystal chemistry of some aluminous silicate perovskite. Earth and Planetary Science Letters, 134, 187–201.

    Article  Google Scholar 

  • Kind, R., & Li, X. (2007). Deep Earth structure—Transition zone and mantle discontinuities. In G. Schubert, B. Romanowicz, & A. Dziewonski (Eds.), Treatise on Geophysics: Vol. 1. Seismology and the structure of the Earth (pp. 591–612). Amsterdam: Elsevier.

    Google Scholar 

  • Kingma, K. J., Cohen, R. E., Hemley, R. J., & Mao, H.-K. (1995). Transformation of stishovite to a denser phase at lower mantle pressures. Nature, 374, 243–245.

    Article  Google Scholar 

  • Kingma, J. K., Mao, H. K., & Hemley, R. J. (1996). Synchrotron XRD of SiO2 to multimegabar pressures. High Pressure Research, 14, 363.

    Article  Google Scholar 

  • Klug, D. D., Rousseau, R., Uehara, K., Bernasconi, M., Le Page, Y., & Tse, J. S. (2001). Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Physical Review B, 63, 104106.

    Article  Google Scholar 

  • Knittle, E., & Jeanloz, R. (1987). Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 gigapascals. Science, 235, 668–670.

    Article  Google Scholar 

  • Knittle, E., & Jeanloz, R. (1991). Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science, 251, 1438–1443.

    Article  Google Scholar 

  • Kobayashi, Y., Kondo, T., Ohtani, E., Hirao, N., Miyajima, N., Yagi, T., et al. (2005). Fe–Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophysical Research Letters, 32, L19301. doi:10.1029/2005GL023257

    Google Scholar 

  • Kojitani, H., Katsura, T., & Akaogi, M. (2007). Aluminum substitution mechanisms in perovskite-type MgSiO3: An investigation by Rietveld analysis. Physics and Chemistry of Minerals, 34(4), 257–267. doi:10.1007/s00269-007-0144-z

    Article  Google Scholar 

  • Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y., & Dubrovinsky, L. S. (2007). Phase transition in CaSiO3 perovskite. Earth and Planetary Science Letters, 260, 564–569.

    Article  Google Scholar 

  • Kondo, T., Ohtani, E., Hirao, N., Yagi, T., & Kikegawa, T. (2004). Phase transitions of (Mg, Fe)O at megabar pressures. Physics of the Earth and Planetary Interiors, 143–144, 201–213.

    Article  Google Scholar 

  • Kubo, T., Suzuki, T., & Akaogi, M. (1997). High pressure phase equilibria in the system CaTiO3–CaSiO3: Stability of perovskite solid solutions. Physics and Chemistry of Minerals, 24, 488–494.

    Article  Google Scholar 

  • Kubo, A., Yagi, T., Ono, S., & Akaogi, M. (2000). Compressibility of Mg0.9Al0.2Si0.9O3 perovskite. Proceedings of the Japan Academy Series B, 76(8), 103–107.

    Article  Google Scholar 

  • Kudoh, Y., Prewitt, C. T., Finger, L. W., Darovskikh, A., & Ito, E. (1990). Effect of iron on the crystal structure of (Mg, Fe)SiO3 perovskite. Geophysical Research Letters, 17(10), 1481–1484. doi:10.1029/GL017i010p01481

    Article  Google Scholar 

  • Kurashina, T., Hirose, K., Ono, S., Sata, N., & Ohishi, Y. (2004). Phase transition in Albearing CaSiO3 perovskite: Implications for seismic discontinuities in the lower mantle. Physics of the Earth and Planetary Interiors, 145, 67–74.

    Article  Google Scholar 

  • Kuwayama, Y., Hirose, K., Satam, N., & Ohishi, Y. (2005). The pyrite-type high-pressure form of silica. Science, 309, 923–925.

    Article  Google Scholar 

  • Lakshtanov, D. L., Sinogeikin, S. V., Konstantin, D., Litasov, K. D., Vitali, B., Prakapenka, V. B., et al. (2007). The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the Earth. Proceedings of the National Academy of Sciences of the U.S.A., 104, 13588–13590.

    Article  Google Scholar 

  • Lauterbach, S., McCammon, C. A., Aken, P. V., Langenhorst, F., & Seifert, F. (2000). Mossbauer and ELNES spectroscopy of (Mg, Fe)(Si, Al)O3 perovskite: A highly oxidized component of the lower mantle. Contributions to Mineralogy and Petrology, 138, 17–26.

    Article  Google Scholar 

  • Lee, Y. M., & Nassaralla, C. L. (1997). Minimization of hexavalent chromium in magnesite-chrome refractory. Metallurgical and Materials Transactions B, 28, 855–859.

    Article  Google Scholar 

  • Lee, K. K. M., O’Neill, B., Panero, W. R., Shim, S. H., Benedetti, L. R., & Jeanloz, R. (2004). Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 223(3–4), 381–393. doi:10.1016/j.epsl.2004.04.033

    Article  Google Scholar 

  • Li, L., Nagai, T., Seto, Y., Fujino, K., Kawano, J., & Itoh, S. (2015). Superior solid solubility of MnSiO3 in CaSiO3 perovskite. Physics and Chemistry of Minerals 42(2), 123–129.  

    Google Scholar 

  • Li, L., Weidner, D. J., Brodholt, J., Alfe, D., Price, G. D., Caracas, R., et al. (2006). Phase stability of CaSiO3 perovskite at high pressure and temperature: Insights from ab initio molecular dynamics. Physics of the Earth and Planetary Interiors, 155, 260–268.

    Article  Google Scholar 

  • Lin, J.-F., Alp, E. E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., et al. (2012). Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite. American Mineralogist, 97, 592–597.

    Article  Google Scholar 

  • Lin, J.-F., Heinz, D. L., Mao, H.-K., Hemley, R. J., Devine, J. M., Li, J., et al. (2003). Stability of magnesiowüstite in Earth’s lower mantle. Proceedings of the National Academy of Sciences of the U.S.A., 100(8), 4405–4408.

    Article  Google Scholar 

  • Lin, J.-F., Speziale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower-mantle minerals: Implications to deep-mantle geophysics and geochemistry. Reviews of Geophysics, 51, 244–275. doi:10.1002/rog.20010

    Article  Google Scholar 

  • Lin, J.-F., Struzhkin, V. V., Jacobsen, S. D., Hu, M. Y., Chow, P., King, J., et al. (2005). Spin transition of iron in magnesiowüstite in Earth’s lower mantle. Nature, 436, 377–380.

    Article  Google Scholar 

  • Litasov, K. D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D. L., Bass, J. D., et al. (2007). High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth and Planetary Science Letters, 262, 620–634. doi:10.1016/j.epsl.2007.08.015

    Article  Google Scholar 

  • Litasov, K., Ohtani, E., Langenhorst, F., Yurimoto, H., Kubo, H., & Kondo, T. (2003). Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth and Planetary Science Letters, 211, 189–203.

    Article  Google Scholar 

  • Litvin, Y. A. (2014). The stishovite paradox in the genesis of superdeep diamonds. Doklady Earth Sciences, 455(1), 274–278.

    Article  Google Scholar 

  • Litvin, Y. A., Spivak, A. V., & Dubrovinsky, L. S. (2016). Magmatic evolution of the material of the Earth’s lower mantle: Stishovite paradox and origin of superdeep diamonds (experiments at 24–26 GPa). Geochemistry International, 54(11), 936–947. doi:10.1134/S0016702916090032

    Article  Google Scholar 

  • Liu, L.-G. (1974). Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophysical Research Letters, 1, 277–280.

    Article  Google Scholar 

  • Liu, L.-G. (1975). Post oxide phases of forsterite and enstatite. Geophysical Research Letters, 2, 417–419.

    Article  Google Scholar 

  • Liu, L. (1977). Ilmenite-type solid solutions between MgSiO3 and Al2O3 and some structural systematics among ilmenite compounds. Geochimica et Cosmochimica Acta, 41, 1355–1361.

    Article  Google Scholar 

  • Liu, L.-G. (2002). An alternative interpretation of lower mantle mineral associations in diamonds. Contributions to Mineralogy and Petrology, 144(1), 16–21.

    Article  Google Scholar 

  • Liu, Z., Irifune, T., Nishi, M., Tange, Y., Arimoto, T., & Shinmei, T. (2016). Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Physics of the Earth and Planetary Interiors, 257, 18–27. doi:10.1016/j.pepi.2016.05.006

    Article  Google Scholar 

  • Liu, L.-G., & Ringwood, A. E. (1975). Synthesis of a perovskite-type polymorph of CaSiO3. Earth and Planetary Science Letters, 28, 209–211.

    Article  Google Scholar 

  • Lobanov, S. S., Zhu, Q., Holtgrewe, N., Prescher, C., Prakapenka, V. B., Oganov, A. R., et al. (2015). Stable magnesium peroxide at high pressure. Scientific Review, 5, 13582. doi:10.1038/srep13582

    Google Scholar 

  • Longo, M., McCammon, C. A., & Jacobsen, S. D. (2011). Microanalysis of the iron oxidation state in (Mg, Fe)O and application to the study of microscale processes. Contributions to Mineralogy and Petrology, 162, 1249–1257.

    Article  Google Scholar 

  • Magyari-Köpe, B., Vitos, L., Grimvall, G., Johansson, B., & Kollar, J. (2002a). Low-temperature crystal structure of CaSiO3 perovskite: An ab initio total energy study. Physical Review B, 65, 193107. doi:10.1103/PhysRevB.65.193107

    Article  Google Scholar 

  • Magyari-Köpe, B., Vitos, L., Johansson, B., & Kollar, J. (2002b). Model structure of perovskites: Cubic-orthorhombic phase transition. Computational Material Science, 25(4), 615–621.

    Article  Google Scholar 

  • Mao, H. K., Chen, L. C., Hemley, R. J., Jephcoat, A. P., Wu, Y., & Bassett, W. A. (1989). Stability and equation of state of CaSiO3-perovskite to 134 GPa. Journal of Geophysical Research, 94, 17889–17894.

    Article  Google Scholar 

  • Mao, Z., Lin, J. F., Scott, H. P., Watson, H. C., Prakapenka, V. B., Xiao, Y., et al. (2011). Iron-rich perovskite in the Earth’s lower mantle. Earth and Planetary Science Letters, 309, 179–184. doi:10.1016/j.epsl.2011.06.030

    Article  Google Scholar 

  • Mao, Z., Lin, J.-F., Yang, J., Inoue, T., & Prakapenka, V. B. (2015). Effects of the Fe3+ spin transition on the equation of state of bridgmanite. Geophysical Research Letters, 42, 4335–4342. doi:10.1002/2015GL064400

    Article  Google Scholar 

  • Mao, H.-K., Shu, J., Fei, Y., Hu, J., & Hemley, R. J. (1996). The wüstite enigma. Physics of the Earth and Planetary Interiors, 96, 135–145.

    Article  Google Scholar 

  • Mao, W., Shu, J., Hu, J., Hemley, R., & Mao, H.-K. (2002). Displacive transition in magnesiowüstite. Journal of Physics: Condensed Matter, 14, 11349–11354.

    Google Scholar 

  • Mao, Z., Wang, F., Lin, J.-F., Fu, S., Yang, J., Wu, X., et al. (2017). Equation of state of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy. American Mineralogist, 102(2), 357–368. doi:10.2138/am-2017-5770

    Article  Google Scholar 

  • Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., & Schilling, F. R. (2009a). Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth and Planetary Science Letters, 287, 345–352.

    Article  Google Scholar 

  • Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009b). Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science, 324(6289), 224–226.

    Article  Google Scholar 

  • Martirosyan, N.S., Yoshino, T., Shatskiy, A., Chanyshev, A.D., & Litasov, K.D. (2016). The CaCO3–Fe interaction: Kinetic approach for carbonate subduction to the deep Earth’s mantle. Physics of the Earth and Planetary Interiors, 259, 1–9.

    Google Scholar 

  • Matas, J., Bass, J. D., Ricard, Y., Mattern, E., & Bukowinsky, M. S. (2007). On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophysical Journal International, 170, 764–780.

    Article  Google Scholar 

  • McCammon, C. A. (1993). Effect of pressure on the composition of the Lower Mantle End Member FexO. Science, 259, 66–68.

    Article  Google Scholar 

  • McCammon, C. A. (1997). Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.

    Article  Google Scholar 

  • McCammon, C. A. (2005). Mantle oxidation state and oxygen fugacity: Constraints on mantle chemistry, structure, and dynamics. In Earth’s Deep Mantle: Structure, Composition, and Evolution: Vol. 160. Geophysical monograph (pp. 219–240).

    Google Scholar 

  • McCammon, C., Hutchison, M. T., & Harris, J. W. (1997). Ferric iron content of mineral inclusions in diamonds from São Luiz: A view into the lower mantle. Science, 278(5337), 434–436.

    Article  Google Scholar 

  • McCammon, C. A., Ringwood, A. E., & Jackson, I. (1983). Thermodynamics of the system Fe-FeO-MgO at high pressure and temperature and a model for formation of the Earth’s core. Geophysical Journal of the Royal Astronomical Society, 72, 577–595.

    Article  Google Scholar 

  • McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253.

    Article  Google Scholar 

  • McWilliams, R. S., Spaulding, D. K., Eggert, J. H., Celliers, P. M., Hicks, D. G., Smith, R. F., et al. (2012). Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science, 338, 1330–1333.

    Article  Google Scholar 

  • Meade, C., Mao, H. K., & Hu, J. (1995). High-temperature phase transition and dissociation of (Mg, Fe)SiO3 perovskite at lower mantle pressures. Science, 268(5218), 1743–1745.

    Article  Google Scholar 

  • Merli, M., Bonadiman, C., Diella, V., & Pavese, A. (2016). Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modelling. Geochimica et Cosmochimica Acta, 173, 304–318.

    Article  Google Scholar 

  • Metsue, A., & Tsuchiya, T. (2011). Lattice dynamics and thermodynamic properties of (Mg, Fe2+)SiO3 postperovskite. Journal of Geophysical Research, 116, JB008018. doi:10.1029/2010JB008018

    Article  Google Scholar 

  • Meyer, H. O. A., & Svisero, D. P. (1975). Mineral inclusions in Brazilian diamonds. Physics and Chemistry of the Earth, 9, 785–795.

    Article  Google Scholar 

  • Mitchell, R. H. (1978). Manganoan magnesian ilmenite and titanian clinohumite from the Jacupiranga carbonatite, Sao Paulo, Brazil. American Mineralogist, 63(5–6), 544–547.

    Google Scholar 

  • Miyahara, M., Kaneko, S., Ohtani, E., Sakai, T., Nagase, T., Kayama, M., et al. (2013). Discovery of seifertite in a shocked lunar meteorite. Nature Communications, 4, 1737. doi:10.1038/ncomms2733

    Article  Google Scholar 

  • Moore, R. O., & Gurney, J. J. (1985). Pyroxene solid solution in garnets included in diamonds. Nature, 318(6046), 553–555.

    Article  Google Scholar 

  • Moore, R. O., Otter, M. L., Rickard, R. S., Harris, J. W., & Gurney, J. J. (1986). The occurrence of moissanite and ferro-periclase as inclusions in diamond. In 4th International Kimberlite Conference Extended Abstracts, Perth (Vol. 16, pp. 409–411). Geological Society of Australia Abstracts.

    Google Scholar 

  • Moran, E., Blesa, M. C., Medina, M.-E., Tornero, J.-D., Menendez, N., & Amador, U. (2002). Nonstoichiometric spinel ferrites obtained from α-NaFeO2 via molten media reactions. Inorganic Chemistry, 41(23), 5961–5967.

    Article  Google Scholar 

  • Muir, J. M. R., & Brodholt, J. P. (2015). Elastic properties of ferrous bearing MgSiO3 and their relevance to ULVZs. Geophysical Journal International, 201(1), 496–504. doi:10.1093/gji/ggv045

  • Muir, J. M. R., & Brodholt, J. P. (2016). Ferrous iron partitioning in the lower mantle. Physics of the Earth and Planetary Interiors, 257, 12–17. doi:10.1016/j.pepi.2016.05.008

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004a). Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Ono, S., & Ohishi, Y. (2003). Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in situ X-ray measurements. Geophysical Research Letters, 30, 1207. doi:10.1029/2002GL016722

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Ono, S., Tsuchiya, T., Isshiki, M., & Watanuki, T. (2004b). High pressure and high temperature phase transitions of FeO. Physics of the Earth and Planetary Interiors, 146, 273–282.

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Sata, N., & Ohishi, Y. (2005). Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophysical Research Letters, 32, L03304. doi:10.1029/2004GL021956

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S., & Takafuji, N. (2002). Water in Earth’s Lower Mantle. Science, 295, 1885–1887.

    Article  Google Scholar 

  • Murakami, M., Ohishi, Y., Hirao, N., & Hirose, K. (2012). A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485(7396), 90–94. doi:10.1038/nature11004

    Article  Google Scholar 

  • Nakajima, Y., Frost, D. J., & Rubie, D. C. (2012). Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle. Journal of Geophysical Research, 117, B08201. doi:10.1029/2012JB009151

    Google Scholar 

  • Navrotsky, A., Schoenitz, M., Kojitani, H., Xu, H., Zhang, J., Weidner, D. J., et al. (2003). Aluminum in magnesium silicate perovskite: Formation, structure, and energetics of magnesium-rich defect solid solutions. Journal of Geophysical Research, 108(B7). doi:10.1029/2002JB002055

  • Nestola, F., Burnham, A. D., Peruzza, L., Tauro, L., Alvaro, M., Walter, M. J., et al. (2016a). Tetragonal almandine-pyrope phase, TAPP: Finally a name for it, the new mineral jeffbenite. Mineralogical Magazine, 80(7), 1219–1232. doi:10.1180/minmag.2016.080.059

    Article  Google Scholar 

  • Nestola, F., Burnham, A., Peruzzo, L., Tauro, L., Alvaro, M., Walter, M. J., et al. (2015) Jeffbenite, IMA 2014-097. CNMNC Newsletter No. 24, April 2015, page 250. Mineralogical Magazine, 79, 247–251.

    Google Scholar 

  • Nestola, F., Cerantola, V., Milani, S., Anzolini, C., McCammon, C., Novella, D., et al. (2016b). Synchrotron Mössbauer Source technique for in situ measurement of iron-bearing inclusions in natural diamonds. Lithos, 265, 328–333. doi:10.1016/j.lithos.2016.06.016

    Article  Google Scholar 

  • Nomura, R., Hirose, K., Sata, N., & Ohishi, Y. (2010). Precise determination of post-stishovite phase transition boundary and implications for seismic heterogeneities in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 183, 104–109. doi:10.1016/j.pepi.2010.08.004

    Article  Google Scholar 

  • Nomura, R., Ozawa, H., Tateno, S., Hirose, K., Hernlund, H., Muto, S., et al. (2011). Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature, 473, 199–203.

    Article  Google Scholar 

  • Oganov, A. R., Brodholt, J. P., & Price, G. D. (2001). Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth and Planetary Science Letters, 184(3–4), 555–560.

    Article  Google Scholar 

  • Oganov, A. R., Gillan, M. J., & Price, G. D. (2005). Structural stability of silica at high pressures and temperatures. Physical Review B, 71, 64104.

    Article  Google Scholar 

  • Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430, 445–448.

    Article  Google Scholar 

  • Ohta, K., Cohen, R. E., Hirose, K., Haule, K., Shimizu, K., & Ohishi, Y. (2012). Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Physical Review Letters, 108, 026403. doi:10.1103/PhysRevLett.108.026403

    Article  Google Scholar 

  • Ohta, K., Fujino, K., Kuwayama, Y., Kondo, T., Shimizu, K., & Ohishi, Y. (2014). Highly conductive iron rich (Mg, Fe)O magnesiowustite and its stability in the Earth’s lower mantle. Journal of Geophysical Research: Solid Earth, 119(6), 4656–4665.

    Google Scholar 

  • Ohta, K., Hirose, K., Shimizu, K., & Ohishi, Y. (2010). High-pressure experimental evidence for metal FeO with normal NiAs-type structure. Physical Review B, 82(174), 120. doi:10.1103/PhysRevB.82.174120

  • Ohta. K., Yagi, T., Hirose, K., & OhishI, Y. (2017). Thermal conductivity of ferropericlase in the Earth's lower mantle. Earth and Planetary Science Letters, 465, 29–37. doi: 10.1016/j.epsi.2017.02.030

  • Omori, K., & Hasegawa, S. (1955). Chemical composition of perthite, ilmenite, allanite and pyroxmangite occurred in pegmatites of vicinity of Iwaizami Town, Iwate Prefecture. Journal of Japanese Association of Mineralogy, Petrography, and Economic Geology, 39, 89–98.

    Google Scholar 

  • Ono, S., Hirose, K., Murakami, M., & Isshiki, M. (2002). Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations. Earth and Planetary Science Letters, 197, 187–192.

    Article  Google Scholar 

  • Ono, S., Ohishi, Y., Isshiki, M., & Watanuki, T. (2005). In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. Journal of Geophysical Research, 110, B02208.

    Article  Google Scholar 

  • Ono, S., Ohishi, Y., & Mibe, K. (2004). Phase transition in CaSi-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle. American Mineralogist, 89, 1480–1485.

    Article  Google Scholar 

  • Ozawa, H., Hirose, K., Ohta, K., Ishii, H., Hiraoka, N., Ohishi, Y., et al. (2011). Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. Physical Review B, 84, 134417.

    Article  Google Scholar 

  • Ozawa, H., Hirose, K., Tateno, S., Sata, N., & Ohishi, Y. (2010). Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa. Physics of the Earth and Planetary Interiors, 179, 157–163.

    Article  Google Scholar 

  • Ozawa, H., Hirose, K., Yonemitsu, K., & Ohishi, Y. (2016). High-pressure melting experiments on Fe–Si alloys and implications for silicon as a light element in the core. Earth and Planetary Science Letters, 456, 47–54. doi:10.1016/j.epsl.2016.08.042

    Article  Google Scholar 

  • Palot, M., Jacobsen, S. D., Townsend, J. P., Nestola, F., Marquardt, K., Harris, J. W., et al. (2016). Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos, 265, 237–243. doi:10.1016/j.lithos.2016.06.023

    Article  Google Scholar 

  • Panero, W. R., & Stixrude, L. P. (2004). Hydrogen incorporation in stishovite at high pressure and symmetric bonding in δ-AlOOH. Earth and Planetary Science Letters, 221, 421–431.

    Article  Google Scholar 

  • Park, K. T., Terakura, K., & Matsui, Y. (1988). Theoretical evidence for a new ultra-high-pressure phase of SiO2. Nature, 336, 670–672. doi:10.1038/336670a0

    Article  Google Scholar 

  • Perrillat, J. P., Ricolleau, A., Daniel, I., Fiquet, G., Mezouar, M., Guignot, N., et al. (2006). Phase transformations of subducted basaltic crust in the upmost lower mantle. Physics of the Earth and Planetary Interiors, 157(1–2), 139–149.

    Article  Google Scholar 

  • Perry, S.N., Pigott, J.S., & Panero, W.R. (2017). Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle.  American Mineralogist, 102, 321–326. doi:  10.2138/am-2017-5816

  • Reid, A. F., & Ringwood, A. E. (1969). Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4. Earth and Planetary Science Letters, 6, 205–208.

    Article  Google Scholar 

  • Reid, A.F., & Ringwood, A.E. (1970). The crystal chemistry of dense M3O4 polymorphs: High pressure Ca2GeO4 of K2NiF4 structure type. Journal of Solid State Chemistry, 1, 557–565.

    Google Scholar 

  • Reid, A. F., & Ringwood, A. E. (1975). High pressure modification of ScAlO3 and some geophysical implications. Journal of Geophysical Research, 80, 3363–3369.

    Article  Google Scholar 

  • Richet, P., Mao, H.-K., & Bell, P. M. (1989). Bulk moduli of magnesiowiistites from static compression measurements. Journal of Geophysical Research, 94(B3), 3037–3045.

    Article  Google Scholar 

  • Richmond, N. C., & Brodholt, J. P. (1998). Calculated role of aluminum in the incorporation of ferric iron into magnesium silicate perovskite. American Mineralogist, 83, 947–951.

    Article  Google Scholar 

  • Ricolleau, A., Fiquet, G., Addad, A., Menguy, N., Vanni, C., Perrillat, J.-P., et al. (2008). Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. American Mineralogist, 93, 144–153. doi:10.2138/am.2008.2532

    Article  Google Scholar 

  • Righter, K., Danielson, L., Drake, M. J., & Domanik, K. (2014). Partition coefficients at high pressure and temperature. In R. W. Carlson (Ed.), Treatise on geochemistry (2nd ed., Vol. 3, pp. 449–477). Elsevier.

    Google Scholar 

  • Ringwood, A. E. (1962). Mineralogical constitution of the deep mantle. Journal of Geophysical Research, 67(10), 4005–4010.

    Article  Google Scholar 

  • Ringwood, A. E. (1975). Composition and petrology of the Earth’s mantle (p. 618). New York: McGraw-Hill.

    Google Scholar 

  • Ringwood, A. E. (1977). Composition of core and implications for origin of Earth. Geochemical Journal, 11(3), 111–135.

    Article  Google Scholar 

  • Róg, G., Kozlowska-Róg, A., & Dudek, M. (2007). The standard Gibbs free energy of formation of calcium chromium (III) oxide in the temperature range (1073 to 1273 K). The Journal of Chemical Thermodynamics, 39, 275–278.

    Article  Google Scholar 

  • Ross, N. L., Angel, R. J., & Seifert, F. (2002). Compressibility of brownmillerite (Ca2Fe2O5): Effect of vacancies on the elastic properties of perovskite. Physics of the Earth and Planetary Interiors, 129, 145–151.

    Article  Google Scholar 

  • Ryabchikov, I. D. (2011). Conditions of diamond formation in the Earth’s lower mantle. Doklady Earth Sciences, 438(2), 788–791.

    Article  Google Scholar 

  • Ryabchikov, I. D., & Kaminsky, F. V. (2013a). The composition of the lower mantle: Evidence from mineral inclusions in diamonds. Doklady Earth Sciences, 453(2), 1246–1249.

    Article  Google Scholar 

  • Ryabchikov, I. D., & Kaminsky, F. V. (2013b). Oxygen potential of diamond formation in the lower mantle. Geology of Ore Deposits, 55(1), 1–12. doi:10.1134/S1075701513010066

    Article  Google Scholar 

  • Ryabchikov, I. D., & Kaminsky, F. V. (2014). Physico-chemical parameters of material in mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamonds. Geochemistry International, 52(11), 903–911. doi:10.1134/S001670291411007X

    Article  Google Scholar 

  • Sakai, T., Ohtani, E., Terasaki, H., Sawada, N., Kobayashi, Y., Miyahara, M., et al. (2009). Fe–Mg partitioning between perovskite and ferropericlase in the lower mantle. American Mineralogist, 94, 921–925. doi:10.2138/am.2009.3123

    Article  Google Scholar 

  • Saxena, S. K., Dubrovinsky, L. S., Lazor, P., Cerenius, Y., Haggkvist, P., Hanfland, M., et al. (1996). Stability of perovskite (MgSiO3) in the Earth’s mantle. Science, 274(5291), 1357–1359.

    Article  Google Scholar 

  • Saxena, S. K., Dubrovinsky, L. S., Lazor, P., & Hu, J. Z. (1998). In situ X-ray study of perovskite (MgSiO3): Phase transition and dissociation at mantle conditions. European Journal of Mineralogy, 10, 1275–1281.

    Article  Google Scholar 

  • Scott Smith, B. H., Danchin, R. V., Harris, J. W., & Stracke, K. J. (1984). Kimberlites near Orroroo, South Australia. In J. Kornprobst (Ed.), Kimberlites I: Kimberlites and related rocks (pp. 121–142). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Seagle, C. T., Heinz, D. L., Campbell, A. J., Prakapenka, V. B., & Wanless, S. T. (2008). Melting and thermal expansion in the Fe–FeO system at high pressure. Earth and Planetary Science Letters, 265, 655–665.

    Article  Google Scholar 

  • Serghiou, G., Zerr, A., & Boehler, R. (1998). (Mg, Fe)SiO3-perovskite stability under lower mantle conditions. Science, 280(5372), 2093–2095.

    Article  Google Scholar 

  • Shannon, R. D., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925–946.

    Article  Google Scholar 

  • Sharp, T. G., El Goresy, A., Wopenka, B., & Chen, M. (1999). A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science, 284, 1511–1513.

    Article  Google Scholar 

  • Sharygin, I. S., Litasov, K. D., Shatskiy, A., Safonov, O. G., Ohtani, E., & Pokhilenko, N. P. (2012) Interaction of orthopyroxene with carbonatite melts at 3 and 6.5 GPa: Implication for evolution of kimberlite magma. In G–COE Symposium 2012. Achievement of G–COE Program for Earth and Planetary Science, Sendai, Japan, 2012 (pp. 146–149).

    Google Scholar 

  • Sherman, D. M. (1989). The nature of pressure-induced metallization of FeO and its implications to the core-mantle boundary. Geophysical Research Letters, 16, 515–518.

    Article  Google Scholar 

  • Sherman, D. M., & Jansen, H. J. F. (1995). First-principles predictions of the high pressure phase transition and electronic structure of FeO: Implications for the chemistry of the lower mantle and core. Geophysical Research Letters, 22, 1001–1004.

    Article  Google Scholar 

  • Shieh, S. R., Duffy, T. S., & Shen, G. (2005). XRD study of phase stability in SiO2 at deep mantle conditions. Earth and Planetary Science Letters, 235, 273–282.

    Article  Google Scholar 

  • Shim, S.-H., Duffy, T. S., & Shen, G. (2000a). The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. Journal of Geophysical Research, 106(B11), 25955–25968.

    Article  Google Scholar 

  • Shim, S. H., Duffy, T., & Shen, G. (2000b). The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Physics of the Earth and Planetary Interiors, 120, 327–338.

    Article  Google Scholar 

  • Shim, S. H., Duffy, T. S., & Shen, G. (2001). Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in Earth’s mantle. Science, 293(5539), 2437–2440.

    Article  Google Scholar 

  • Shim, S.-H., Jeanloz, R., & Duffy, T. S. (2002). Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophysical Research Letters, 29(24), 2466. doi:10.1029/2002GL016148

    Article  Google Scholar 

  • Shu, J., Mao, H. K., Hu, J., Fei, Y., & Hemley, R. J. (1998). Single-crystal XRD of wüstite to 30 GPa hydrostatic pressure. Neues Jahrbuch für Mineralogie Abhandlungen, 172, 309–323.

    Google Scholar 

  • Shukla, G., Wu, Z., Hsu, H., Floris, A., Cococcioni, M., & Wentzcovitch, R. M. (2015). Thermoelasticity of Fe2+-bearing bridgmanite. Geophysical Research Letters, 42, 1741–1749.

    Article  Google Scholar 

  • Sidorin, I., Michael, G., & Helmberger, D. V. (1999). Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 1326–1331.

    Article  Google Scholar 

  • Simpson, E. S. (1929). Contributions to the mineralogy of Western Australia. Journal of the Royal Society of Western Australia, 15, 99–113.

    Google Scholar 

  • Sinmyo, R., Bykova, E., McCammon, C., Kupenko, I., Potapkin, V., & Dubrovinsky, L. (2014). Crystal chemistry of Fe3+-bearing (Mg, Fe)SiO3 perovskite: a single-crystal X-ray diffraction study. Physics and Chemistry of Minerals, 41, 409–417.

    Article  Google Scholar 

  • Sinmyo, R., & Hirose, K. (2013). Iron partitioning in pyrolitic lower mantle. Physics and Chemistry of Minerals, 40, 107–113. doi:10.1007/s00269-012-0551-7

    Article  Google Scholar 

  • Sinogeikin, S. V., Zhang, J., & Bass, J. D. (2004). Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy. Geophysical Research Letters, 31, L06620. doi:10.1029/2004GL019559

    Article  Google Scholar 

  • Snetsinger, K. G. (1969). Manganoan ilmenite from a Sierran adamellite. American Mineralogist, 54(4), 431–435.

    Google Scholar 

  • Sobolev, N. V., Yefimova, E. S., Channer, D. M. D., Anderson, P. F. N., & Barron, K. M. (1998). Unusual upper mantle beneath Guaniamo, Guyana shield, Venezuela: Evidence from diamond inclusions. Geology, 26(11), 971–974.

    Article  Google Scholar 

  • Speziale, S., Milner, A., Lee, V. E., Clark, S. M., Pasternak, M. P., & Jeanloz, R. (2005). Iron spin transition in Earth’s mantle. Proceedings of the National Academy of the U.S.A., 102, 17918–17922. doi:10.1073/pnas.0508919102

    Article  Google Scholar 

  • Stachel, T., Harris, J. W., Brey, G. P., & Joswig, W. (2000). Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140(1), 16–27.

    Article  Google Scholar 

  • Stebbins, J. F., Kroeker, S., & Andrault, D. (2001). The mechanism of solution of aluminum oxide in MgSiO3 perovskite. Geophysical Research Letters, 28, 615–618.

    Article  Google Scholar 

  • Stishov, S. M., & Belov, N. V. (1962). Crystal structure of a new dense modification of silica SiO2. Doklady Akademii Nauk SSSR, 143(4), 951.

    Google Scholar 

  • Stishov, S. M., & Popova, S. V. (1961). A new dense modification of silica. Geochemistry (USSR), 10, 923–926.

    Google Scholar 

  • Stixrude, L., & Cohen, R. E. (1993). Stability of orthorhombic MgSiO3 perovskite in the Earth’s lower mantle. Nature, 364(6438), 613–616.

    Article  Google Scholar 

  • Stixrude, L., Cohen, R. E., Yu, R., & Krakauer, H. (1996). Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. American Mineralogist, 81, 1293–1296.

    Google Scholar 

  • Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., & Fumagalli, P. (2007). Phase stability and shear softening in CaSiO3 perovskite at high pressure. Physical Review B, 75, 024108.

    Article  Google Scholar 

  • Sugahara, M., Yoshiasa, A., Komatsu, Y., Yamanaka, T., Bolfan-Kasanova, N., Nakatsuka, A., et al. (2006). Reinvestigation of the MgSiO3 perovskite structure at high pressure. American Mineralogist, 91, 533–536.

    Article  Google Scholar 

  • Sun, N., Mao, Z., Yan, S., Lin, J. F., Wu, X., & Prakapenka, V. B. (2016). Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3-perovskite. Journal of Geophysical Research, 121(7), 4876–4892. doi:10.1002/2016JB013062

    Google Scholar 

  • Takafuji, N., Yagi, T., Miyajima, N., & Sumita, T. (2002). Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature. Physics and Chemistry of Minerals, 29, 532–537. doi:10.1007/s00269-002-0271-5

    Article  Google Scholar 

  • Tange, Y., Takahashi, E., Nishihara, Y., Funakoshi, K., & Sata, N. (2009). Phase relations in the system MgO-FeO-SiO2 to 50 GPa and 2000°C: An application of experimental techniques using multianvil apparatus with sintered diamond anvils. Journal of Geophysical Research, 114(B02), 214.

    Google Scholar 

  • Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., & Wills, K. (2009a). The diamonds of South Australia. Lithos, 112S, 806–821.

    Article  Google Scholar 

  • Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., & Wills, K. (2009b). Deep mantle diamonds from South Australia: A record of Pacific subduction at the Gondwanan margin. Geology, 37(1), 43–46. doi:10.1130/G25055A.1

    Article  Google Scholar 

  • Tappert, R., Stachel, T., Harris, J. W., Muehlenbachs, K., Ludwig, T., & Brey, G. (2005a). Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contributions to Mineralogy and Petrology, 150(5), 505–522.

    Article  Google Scholar 

  • Tappert, R., Stachel, T., Harris, J. W., Shimizu, N., & Brey, G. P. (2005b). Mineral inclusions in diamonds from the Slave Province, Canada. European Journal of Mineralogy, 17(3), 423–440.

    Article  Google Scholar 

  • Tarrida, M., & Richet, P. (1989). Equation of state of CaSiO3 perovskite to 96 GPa. Geophysical Research Letters, 16, 1351–1354.

    Article  Google Scholar 

  • Tateno, S., Hirose, K., & Ohishi, Y. (2014). Melting experiments on peridotite to lowermost mantle conditions. Journal of Geophysical Research: Solid Earth, 119, 4684–4694. doi:10.1002/2013JB010616

    Google Scholar 

  • Teter, D. M., Hemley, R. J., Kresse, G., & Hafner, J. (1998). High-pressure polymorphism in silica. Physical Review Letters, 80, 2145–2148.

    Article  Google Scholar 

  • Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., & Walter, M. J. (2014). Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168, 1081.

    Article  Google Scholar 

  • Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., & Walter, M. J. (2016). Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts. Lithos, 265, 108–124. doi:10.1016/j.lithos.2016.08.035

    Article  Google Scholar 

  • Tomioka, N., & Fujino, K. (1997). Natural (Mg, Fe)SiO3-ilmenite and perovskite in the Tenham meteorite. Science, 277, 1084–1086.

    Article  Google Scholar 

  • Tomioka, N., & Fujino, K. (1999). Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. American Mineralogist, 84, 267–271.

    Article  Google Scholar 

  • Townsend, J. P., Tsuchiya, J., Bina, C. R., & Jacobsen, S. D. (2016). Water partitioning between bridgmanite and postperovskite in the lowermost mantle. Earth and Planetary Science Letters, 454, 20–27. doi:10.1016/j.epsl.2016.08.009

    Article  Google Scholar 

  • Tschauner, O., Ma, Ch., Beckett, J. R., Prescher, C., Prakapenka, V. B., & Rossman, G. R. (2014). Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346(6213), 1100–1102.

    Article  Google Scholar 

  • Tsuchida, Y., & Yagi, T. (1989). A new, post-stishovite high-pressure polymorph of silica. Nature, 340, 217–220.

    Article  Google Scholar 

  • Tsuchiya, T., & Kawai, K. (2013). Ab initio mineralogical model of the Earth’s lower mantle. In: S.-i. Karato (Ed.), Physics and Chemistry of the Deep Earth. John Wiley, Sons, pp. 213–243.

    Google Scholar 

  • Tsuchiya, T., Caracas, R., & Tsuchiya, J. (2004a). First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters, 31, L11610. doi:10.1029/2004GL019649

    Google Scholar 

  • Tsuchiya, T., Tsuchiya, J., Umemoto, K., & Wentzcovitch, R. M. (2004b). Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth and Planetary Science Letters, 224, 241–248.

    Article  Google Scholar 

  • Tsuchiya, T., & Wang, X. (2013). Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. Journal of Geophysical Research, 118, 83–91. doi:10.1029/2012JB009696

    Google Scholar 

  • Umemoto, K., Kawamura, K., Hirose, K., & Wentzcovitch, R. M. (2016). Post-stishovite transition in hydrous aluminous SiO2. Physics of the Earth and Planetary Interiors, 255, 18–26. doi:10.1016/j.pepi.2016.03.008

    Article  Google Scholar 

  • Van Aken, P. A., & Liebscher, B. (2002). Quantification of ferrous/ferric ratios in minerals: New evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Physics and Chemistry of Minerals, 29(3), 188–200.

    Article  Google Scholar 

  • Van Rythoven, A. D., & Schulze, D. J. (2009). In-situ analysis of diamonds and their inclusions from the Diavik Mine, Northwest Territories, Canada: Mapping diamond growth. Lithos, 112S, 870–879.

    Article  Google Scholar 

  • Vanpeteghem, C., Angel, R., Ross, N., Jacobsen, S., Dobson, D., Litasov, K., et al. (2006). Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155(1–2), 96–103.

    Article  Google Scholar 

  • Vilella, K., Shim, S.-H., Farnetani, C. G., & Badro, J. (2015). Spin state transition and partitioning of iron: Effects on mantle dynamics. Earth and Planetary Science Letters, 417, 57–66. doi:10.1016/j.epsl.2015.02.009

    Article  Google Scholar 

  • Vincent, E. A., & Phillips, R. (1954). Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland. Geochimica et Cosmochimica Acta, 6(1), 1–34.

    Article  Google Scholar 

  • Wadhawan, V. K. (1982). Ferroelasticitay and related properties of crystals. Phase Transitions, 3, 3–103.

    Article  Google Scholar 

  • Walter, M. J., Kubo, A., Yoshino, T., Brodholt, J., Koga, K. T., & Ohishi, Y. (2004a). Phase relations and equation-of-state of aluminous Mg-silicate perovskite and implications for Earth’s lower mantle. Earth and Planetary Science Letters, 222(2), 501–516.

    Article  Google Scholar 

  • Walter, M. J., Nakamura, E., Tronnes, R. G., & Frost, D. J. (2004b). Experimental constraints on crystallization differentiation in a deep magma ocean. Geochimica et Cosmochimica Acta, 68, 4267–4284.

    Article  Google Scholar 

  • Wang, W., Gasparik, T., & Rapp, R. (2000). Partitioning of rare earth elements between CaSiO3 perovskite and coexisting phases: Constraints on the formation of CaSiO3 inclusions in diamond. Earth and Planetary Science Letters, 181(3), 291–300.

    Article  Google Scholar 

  • Wang, Y. B., & Weidner, D. J. (1994). Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophysical Research Letters, 21, 895–898.

    Article  Google Scholar 

  • Warren, M. C., Ackland, G. J., Karki, B. B., & Clark, S. J. (1998). Phase transitions in silicate perovskites from first principles. Mineralogical Magazine, 62(5), 585–598.

    Article  Google Scholar 

  • Wentzcovitch, R. M., Ross, N. L., & Price, G. D. (1995). Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Physics of the Earth and Planetary Interiors, 90, 101–112.

    Article  Google Scholar 

  • Wicks, J. K., & Duffy, T. S. (2016). Crystal structures of minerals in the lower mantle. In H. Terasaki & R. A. Fischer (Eds.), Deep Earth: Physics and Chemistry of the Lower Mantle and Core: Vol. 217. Geophysical monograph (pp. 69–87).

    Google Scholar 

  • Wicks, J. K., Jackson, J. M., Sturhahn, W., Zhuravlev, K. K., Tkachev, S. N., & Prakapenka, V. B. (2015). Thermal equation of state and stability of (Mg0.06Fe0.94)O. Physics of the Earth and Planetary Interiors, 249, 28–42.

    Article  Google Scholar 

  • Wilding, M. C. (1990). A study of diamonds with syngenetic inclusions (Unpublished Ph.D. thesis). University of Edinburgh, UK, 281 pp.

    Google Scholar 

  • Wilding, M. C., Harte, B., & Harris, J. W. (1991). Evidence for a deep origin for the Sao Luiz diamonds. In Fifth International Kimberlite Conference Extended Abstracts, Araxa, June 1991, pp. 456–458.

    Google Scholar 

  • Williams, Q., & Knittle, E. (2005). The highly uncertain bulk composition of Earth’s mantle. In R. van der Hilst, J. Trampert, J. Bass, & J. Matas (Eds.), Structure, dynamics and properties of Earth’s Mantle (pp. 187–200). Washington, D.C.: AGU Press.

    Google Scholar 

  • Wirth, R., Dobrzhinetskaya, L., Harte, B., Schreiber, A., & Green, H. W. (2014). High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth and Planetary Science Letters, 404, 365–376.

    Article  Google Scholar 

  • Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., & Kaminsky, F. (2007). Nanocrystalline hydrous aluminium silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259(3–4), 384–399.

    Article  Google Scholar 

  • Wolf, G. H., & Jeanloz, R. (1985). Lattice dynamics and structural distortions of CaSiO3 and MgSiO3 perovskites. Geophysical Research Letters, 12(7), 413–416.

    Article  Google Scholar 

  • Wood, B. J. (2000). Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth and Planetary Science Letters, 174(3–4), 341–354.

    Article  Google Scholar 

  • Wood, B. J., & Corgne, A. (2009). Mineralogy of the Earth—Trace elements and hydrogen in the Earth’s transition zone and lower mantle. In G. D. Price (Ed.), Treatise on geophysics. Mineral physics (pp. 63–89.). Elesevier.

    Google Scholar 

  • Wu, Z., João, F., Justo, F., & Wentzcovitch, R. M. (2013). Elastic anomalies in a spin-crossover system: Ferropericlase at lower mantle conditions. Physical Review Letters, 110, 228501.

    Article  Google Scholar 

  • Wu, Z., & Wentzcovitch, R. M. (2014). Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proceedings of the National Academy of the U.S.A., 111, 10468–10472.

    Article  Google Scholar 

  • Xu, S., Lin, J.-F., Morgan, D. (2017). Iron speciation induced chemical and seismic heterogeneities in the lower mantle. Journal of Geophysical Research. Solid Earth, 122. doi: 10.1002/2016JB013543.

  • Xu, Y., McCammon, C., & Poe, B. T. (1998). The effect of alumina on the electrical conductivity of silicate perovskite. Science, 282, 922–924.

    Article  Google Scholar 

  • Xu, S., Shim, S.-H., & Morgan, D. (2015). Origin of Fe3+ in Fe-containing, Al-free mantle silicate perovskite. Earth and Planetary Science Letters, 409, 319–328.

    Article  Google Scholar 

  • Yagi, T., Okabe, K., Nishiyama, N., Kubo, A., & Kikegawa, T. (2004). Complicated effects of aluminum on the compressibility of silicate perovskite. Physics of the Earth and Planetary Interiors, 143–144, 81–91.

    Article  Google Scholar 

  • Yagi, T., Suzuki, T., & Akimoto, S. (1985). Static compression of wüstite (Fe0.98)O to 120 GPa. Journal of Geophysical Research, 90, 8784–8788.

    Article  Google Scholar 

  • Yamamoto, T., Yuen, D. A., & Ebisuzaki, T. (2003). Substitution mechanism of Al ions in MgSiO3 perovskite under high pressure conditions from first-principles calculations. Earth and Planetary Science Letters, 206, 617–625.

    Article  Google Scholar 

  • Yamanaka, T., Fukuda, T., & Tsuchiya, J. (2002). Bonding character of SiO2 stishovite under high pressures up to 30 GPa. Physics and Chemistry of Minerals, 29, 633–641. doi:10.1007/s00269-002-0257-3

    Article  Google Scholar 

  • Yamanaka, T., Uchida, A., & Nakamoto, Y. (2008). Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist, 93, 1874–1881. doi:10.2138/am.2008.2934

    Article  Google Scholar 

  • Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Guo, X., et al. (2014). Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, 262–267. doi:10.1016/j.pepi.2014.01.013

    Article  Google Scholar 

  • Yang, J., Tong, X., Lin, J.-F., Okuchi, T., & Tomioka, N. (2015). Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Scientific Reports, 5, 17188. doi:10.1038/srep17188

    Article  Google Scholar 

  • Yeganeh-Haeri, A., Weidner, D. J., & Ito, E. (1989). Elasticity of MgSiO3 in the perovskite structure. Science, 243, 787–789.

    Article  Google Scholar 

  • Yoshino, T., Kamada, S., Zhao, C., Ohtani, E., & Naohisa, H. (2016). Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 208–219.

    Article  Google Scholar 

  • Yu, Y. G., Wentzcovitch, R. M., Vinograd, V. L., & Angel, R. J. (2011). Thermodynamic properties of MgSiO3 majorite and phase transitions near 660 km depth in MgSiO3 and Mg2SiO4: A first principles study. Journal of Geophysical Research, 116, B02208. doi:10.1029/2010JB007912

    Google Scholar 

  • Zedgenizov, D. A., Kagi, H., Shatsky, V. S., & Ragozin, A. L. (2014a). Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 240(1–2), 114–124. doi:10.1016/j.chemgeo.2013.10.033

    Article  Google Scholar 

  • Zedgenizov, D. A., Ragozin, A. L., Kalininaa, V. V., & Kagi, H. (2016). The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochemistry International, 54(10), 890–900. doi:10.1134/S0016702916100116

    Article  Google Scholar 

  • Zedgenizov, D. A., Shatskiy, A., Ragozin, A. L., Kagi, H., & Shatsky, V. S. (2014b). Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment. American Mineralogist, 99, 547–550.

    Article  Google Scholar 

  • Zedgenizov, D. A., Shatsky, V. S., Panin, A. V., Evtushenko, O. V., Ragozin, A. L., & Kagi, H. (2015). Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit, Brazil. Russian Geology and Geophysics, 56(1), 296–305.

    Article  Google Scholar 

  • Zerr, A., Serghiou, G., & Boehler, R. (1997). Melting of CaSiO3 perovskite to 430 kbar and first in situ measurements of lower mantle eutectic temperatures. Geophysical Research Letters, 12(24), 909–912.

    Article  Google Scholar 

  • Zhai, S., Yin, Y., Shieh, S. R., Shan, S., Xue, W., Wang, C.-P., et al. (2016). High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4. Physics and Chemistry of Minerals, 43, 307–314. doi:10.1007/s00269-015-0795-0

    Article  Google Scholar 

  • Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzera, B. (2016a). High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264–273.

    Article  Google Scholar 

  • Zhang, J., Li, B., Utsumi, W., & Liebermann, R. C. (1996). In situ X-ray observations of the coesite-stishovite transition: Reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 1–10.

    Article  Google Scholar 

  • Zhang, L., Meng, Y., Yang, W., Wang, L., Mao, W. L., Zeng, Q. S., et al. (2014). Disproportionation of (Mg, Fe)SiO3 perovskite in Earth’s deep lower mantle. Science, 344(6186), 877–882. doi:10.1126/science.1250274

    Article  Google Scholar 

  • Zhang, L., Popov, D., Meng, Y., Wang, J., Ji, C., Li, B., et al. (2016b). In situ crystal structure determination of seifertite SiO2 at 129 GPa: Studying a minor phase near Earth’s core–mantle boundary. American Mineralogist, 101, 231–234.

    Article  Google Scholar 

  • Zhang, J., & Weidner, D. J. (1999). Thermal equation of state of aluminum-enriched silicate perovskite. Science, 284, 782–784.

    Article  Google Scholar 

  • Zhang, J., & Zhao, Y. (2005). Effects of defect and pressure on the thermal expansivity of FeXO. Physics and Chemistry of Minerals, 32, 241–247.

    Article  Google Scholar 

  • Zhu, Q., Oganov, A. R., & Lyakhov, A. O. (2013). Novel stable compounds in the Mg–O system under high pressure. Physical Chemistry Chemical Physics, 15, 7696–7700.

    Article  Google Scholar 

  • Zou, G. T., Mao, H. K., Bell, P. M., & Virgo, D. (1980). High-pressure experiments on the iron oxide wüstite (Fe1−xO). Yearbook Carnegie Institution of Washington, 79, 374–376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix V. Kaminsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaminsky, F.V. (2017). Ultramafic Lower-Mantle Mineral Association. In: The Earth's Lower Mantle. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-55684-0_4

Download citation

Publish with us

Policies and ethics