Advertisement

Parallel Computation of Normalized Legendre Polynomials Using Graphics Processors

Conference paper
  • 531 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 687)

Abstract

To carry out some calculations in physics and Earth sciences, for example, to determine spherical harmonics in geodesy or angular momentum in quantum mechanics, it is necessary to compute normalized Legendre polynomials. We consider the solution to this problem on modern graphics processing units, whose massively parallel architectures allow to perform calculations for many arguments, orders and degrees of polynomials simultaneously. For higher degrees of a polynomial, computations are characterized by a considerable spread in numerical values and lead to overflow and/or underflow problems. In order to avoid such problems, support for extended-range arithmetic has been implemented.

Keywords

Normalized Legendre polynomials Extended-range arithmetic GPU CUDA 

Notes

Acknowledgement

This work was supported by the Russian Foundation for Basic Research, project No. 16-37-60003 mol_a_dk.

References

  1. 1.
    Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists, 7th edn. Academic Press, Boston (2013)zbMATHGoogle Scholar
  2. 2.
    Wittwer, T., Klees, R., Seitz, K., Heck, B.: Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic. J. Geodesy 82(4), 223–229 (2008). doi: 10.1007/s00190-007-0172-y CrossRefzbMATHGoogle Scholar
  3. 3.
    Fukushima, T.: Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers. J. Geodesy 86(4), 271–285 (2012). doi: 10.1007/s00190-011-0519-2 CrossRefGoogle Scholar
  4. 4.
    Morris, R.J., Najmanovich, R.J., Kahraman, A., Thornton, J.M.: Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons. Bioinformatics 21(10), 2347–2355 (2005). doi: 10.1093/bioinformatics/bti337 CrossRefGoogle Scholar
  5. 5.
    Rose, M.: Elementary Theory of Angular Momentum. Wiley, New York (1957)zbMATHGoogle Scholar
  6. 6.
    Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., Ulerich, R.: GNU Scientific Library (2016). https://www.gnu.org/software/gsl/manual/gsl-ref.pdf
  7. 7.
    Belousov, S.: Tables of Normalized Associated Legendre Polynomials. Pergamon Press, New York (1962)zbMATHGoogle Scholar
  8. 8.
    Smith, J.M., Olver, F.W.J., Lozier, D.W.: Extended-range arithmetic and normalized Legendre polynomials. ACM Trans. Math. Softw. 7(1), 93–105 (1981). doi: 10.1145/355934.355940 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wenzel, G.: Ultra-high degree geopotential models GPM98A, B, and C to degree 1800. In: Joint Meeting of the International Gravity Commission and International Geoid Commission, Trieste (1998)Google Scholar
  10. 10.
    Holmes, S.A., Featherstone, W.E.: A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J. Geodesy 76(5), 279–299 (2002). doi: 10.1007/s00190-002-0216-2 CrossRefzbMATHGoogle Scholar
  11. 11.
    Hauser, J.R.: Handling floating-point exceptions in numeric programs. ACM Trans. Program. Lang. Syst. 18(2), 139–174 (1996). doi: 10.1145/227699.227701 CrossRefGoogle Scholar
  12. 12.
    IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, pp. 1–20 (1985). doi: 10.1109/IEEESTD.1985.82928
  13. 13.
    IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp. 1–70 (2008). doi: 10.1109/IEEESTD.2008.4610935
  14. 14.
    Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston, New York (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    The “University cluster” program’s technological platform. https://unihub.ru/resources/sl390m2090

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Electronic Computing MachinesVyatka State UniversityKirovRussia

Personalised recommendations