Advertisement

Liquid Biopsies in Malignant Melanoma: From Bench to Bedside

  • Estíbaliz Alegre
  • Leyre Zubiri
  • Juan Pablo Fusco
  • Natalia Ramírez
  • Álvaro González
  • Ignacio Gil-BazoEmail author
Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

Malignant melanoma is a malignant tumour originated from melanocytic cells and primarily involves the skin. However, it can also arise from the extracutaneous melanocytes located in the eye and mucosal surfaces. An increasing incidence of cutaneous melanoma in white population has been observed during the last decades. In Europe, the incidence is 10–15 new cases per 100,000 subjects annually and in the USA rises up to 18 cases per 100,000 inhabitants. However, the highest incidence has been reported in Australian and New Zealand population, with 40–60 cases per 100,000 inhabitants annually.

The current therapeutic armamentarium against malignant melanoma has recently incorporated new standards of care through the development of targeted therapies and new immunotherapy approaches. Tumour biomarkers are valuable tools to significantly improve treatment efficacy and minimize the cost by selecting the right treatment for the proper patient.

In this new scenario, serological tumour markers should be reviewed. Among them, potential circulating biomarkers such as cell-free DNA, exosomes, microRNA and circulating tumour cells have been identified.

In this chapter, we will summarize classical and emerging tumour markers of clinical value in malignant melanoma and discuss their potential applicability in the selection and monitoring of emerging targeted therapeutics.

Abbreviations

APP

Amyloid-beta precursor protein

BEAMing

Beads, emulsions, amplification and magnetics

Bp

Base pairs

BRAF

B-Raf proto-oncogene, serine/threonine kinase

CD 125

Cluster differentiation 125

CDKN2a

Cyclin-dependent kinase inhibitor 2A

CDK4

Cyclin-dependent kinase 4

ctDNA

Cell-free circulating tumour DNA

CTCs

Circulating tumour cells

CTLA-4

Cytotoxic T lymphocyte-associated antigen 4

DFS

Disease-free survival

FDA

Food and drug administration

HGF

Hepatocyte growth factor

HGFR/MET

Hepatocyte growth factor receptor

HR

Hazard ratio

IFN-α

Interferon alpha

IGF-1R

Insulin-like growth factor 1 receptor

LDH

Lactate dehydrogenase

MAPK

Mitogen-activated protein kinase

MEK

MAP kinase-ERK kinase

MGMT

O6-Methylguanine-DNA methyltransferase

MITF

Microphthalmia transcription factor

NK

Natural killer

NRAS

Neuroblastoma RAS viral (v-ras) oncogene homolog

OS

Overall survival

PCR

Polymerase chain reaction

PD1

Programmed cell death protein 1

PDGFR-β

Beta-type platelet-derived growth factor receptor

PDL-1

Programmed death-ligand 1

PFS

Progression-free survival

PI3K

Phosphatidylinositol 3-kinase

PIP2

Phosphatidylinositol 4,5-biphosphate

PIP3

Phosphatidylinositol 3,4,5-triphosphate

PTEN

Phosphatase and tensin homolog

qPCR

Quantitative polymerase chain reaction

RAR-β

Retinoic acid receptor beta

RASSF1

Ras association (RalGDS/AF-6) domain family member 1

RECIST

Response evaluation criteria in solid tumours

RTK

Receptor tyrosine kinases

SCF

Stem cell factor

SOCS1

Suppressor of cytokine signalling 1

SOCS2

Suppressor of cytokine signalling 2

TILs

Tumour-infiltrating lymphocytes

References

  1. 1.
    Merrill RM. Risk-adjusted melanoma skin cancer incidence rates in whites (United States). Melanoma Res. 2011;21(6):535–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A, et al. Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur J Cancer. 2010;46(2):270–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Garbe C, Leiter U. Melanoma epidemiology and trends. Clin Dermatol. 2009;27(1):3–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Chapman PB, Einhorn LH, Meyers ML, Saxman S, Destro AN, Panageas KS, et al. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol. 1999;17(9):2745–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Hill VK, Gartner JJ, Samuels Y, Goldstein AM. The genetics of melanoma: recent advances. Annu Rev Genomics Hum Genet. 2013;14:257–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.PubMedCrossRefGoogle Scholar
  7. 7.
    McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal. 2006;8(9–10):1775–89.PubMedCrossRefGoogle Scholar
  8. 8.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Ellerhorst JA, Greene VR, Ekmekcioglu S, Warneke CL, Johnson MM, Cooke CP, et al. Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res. 2011;17(2):229–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 1999;18(8):2137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29(10):1239–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol. 2006;2(7):358–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004.PubMedCrossRefGoogle Scholar
  15. 15.
    Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004;64(19):7002–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Fecher LA, Cummings SD, Keefe MJ, Alani RM. Toward a molecular classification of melanoma. J Clin Oncol. 2007;25(12):1606–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Russo AE, Torrisi E, Bevelacqua Y, Perrotta R, Libra M, McCubrey JA, et al. Melanoma: molecular pathogenesis and emerging target therapies (review). Int J Oncol. 2009;34(6):1481–9.PubMedGoogle Scholar
  18. 18.
    Tsao H, Goel V, Wu H, Yang G, Haluska FG. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122(2):337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Serrano M, Gomez-Lahoz E, DePinho RA, Beach D, Bar-Sagi D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science. 1995;267(5195):249–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 2000;14(19):2393–409.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril MF, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66(20):9818–28.PubMedCrossRefGoogle Scholar
  23. 23.
    Walker GJ, Flores JF, Glendening JM, Lin AH, Markl ID, Fountain JW. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer. 1998;22(2):157–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444(7119):633–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Madhunapantula SV, Robertson GP. Is B-Raf a good therapeutic target for melanoma and other malignancies? Cancer Res. 2008;68(1):5–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95(4):496–505.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hayward NK. Genetics of melanoma predisposition. Oncogene. 2003;22(20):3053–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;3(7):e2734.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-kit mutation or amplification. J Clin Oncol. 2011;29(21):2904–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Minor DR, Kashani-Sabet M, Garrido M, O’Day SJ, Hamid O, Bastian BC. Sunitinib therapy for melanoma patients with KIT mutations. Clin Cancer Res. 2012;18(5):1457–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Bottomley A, Coens C, Suciu S, Santinami M, Kruit W, Testori A, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma: a phase III randomized controlled trial of health-related quality of life and symptoms by the European Organisation for Research and Treatment of Cancer melanoma group. J Clin Oncol. 2009;27(18):2916–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kalland ME, Oberprieler NG, Vang T, Tasken K, Torgersen KM. T cell-signaling network analysis reveals distinct differences between CD28 and CD2 costimulation responses in various subsets and in the MAPK pathway between resting and activated regulatory T cells. J Immunol. 2011;187(10):5233–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Schwarzer A, Wolf B, Fisher JL, Schwaab T, Olek S, Baron U, et al. Regulatory T-cells and associated pathways in metastatic renal cell carcinoma (mRCC) patients undergoing DC-vaccination and cytokine-therapy. PLoS One. 2012;7(10):e46600.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Crosby T, Fish R, Coles B, Mason MD. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev. 2000;2:CD001215.Google Scholar
  37. 37.
    Avril MF, Aamdal S, Grob JJ, Hauschild A, Mohr P, Bonerandi JJ, et al. Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol. 2004;22(6):1118–25.PubMedCrossRefGoogle Scholar
  38. 38.
    Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18(1):158–66.PubMedCrossRefGoogle Scholar
  39. 39.
    Atkins MB. Cytokine-based therapy and biochemotherapy for advanced melanoma. Clin Cancer Res. 2006;12(7 Pt 2):2353s–8s.PubMedCrossRefGoogle Scholar
  40. 40.
    Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci U S A. 2010;107(33):14903–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Houben R, Becker JC, Kappel A, Terheyden P, Brocker EB, Goetz R, et al. Constitutive activation of the ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog. 2004;3(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ugurel S, Thirumaran RK, Bloethner S, Gast A, Sucker A, Mueller-Berghaus J, et al. B-RAF and N-RAS mutations are preserved during short time in vitro propagation and differentially impact prognosis. PLoS One. 2007;2(2):e236.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jakob JA, Bassett Jr RL, Ng CS, Curry JL, Joseph RW, Alvarado GC, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Bucheit AD, Syklawer E, Jakob JA, Bassett Jr RL, Curry JL, Gershenwald JE, et al. Clinical characteristics and outcomes with specific BRAF and NRAS mutations in patients with metastatic melanoma. Cancer. 2013;119(21):3821–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A. 2008;105(8):3041–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366(3):207–15.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Falchook GS, Lewis KD, Infante JR, Gordon MS, Vogelzang NJ, DeMarini DJ, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):782–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ascierto PA, Minor D, Ribas A, Lebbe C, O'Hagan A, Arya N, et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol. 2013;31(26):3205–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(11):1087–95.PubMedCrossRefGoogle Scholar
  58. 58.
    Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011;71(7):2750–60.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Smalley KS, Lioni M, Dalla Palma M, Xiao M, Desai B, Egyhazi S, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008;7(9):2876–83.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sullivan RJ, Flaherty KT. Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer. 2013;49(6):1297–304.PubMedCrossRefGoogle Scholar
  62. 62.
    Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968–72.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fedorenko IV, Paraiso KH, Smalley KS. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol. 2011;82(3):201–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011;29(22):3085–96.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480(7377):387–90.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17(5):989–1000.PubMedCrossRefGoogle Scholar
  69. 69.
    Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res. 1991;(262):3–11.Google Scholar
  72. 72.
    Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992;71(7):1065–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100(14):8372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Merelli B, Massi D, Cattaneo L, Mandala M. Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit Rev Oncol Hematol. 2014;89(1):140–65.PubMedCrossRefGoogle Scholar
  76. 76.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17.PubMedCrossRefGoogle Scholar
  78. 78.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31(34):4311–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.PubMedCrossRefGoogle Scholar
  83. 83.
    Korman A, Chen B, Wang C, Wu L, Cardarelli P and Selby M. Activity of anti-PD-1 in murine tumor models: role of “host” PD-L1 and synergistic effect of anti-PD-1 and anti-CTLA-4. J Immunol 2007;178(1 Supple):S82.Google Scholar
  84. 84.
    Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107(9):4275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front Oncol. 2014;4:385.PubMedGoogle Scholar
  86. 86.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.PubMedCrossRefGoogle Scholar
  87. 87.
    Gion M, Daidone MG. Circulating biomarkers from tumour bulk to tumour machinery: promises and pitfalls. Eur J Cancer. 2004;40(17):2613–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Alegre E, Sammamed M, Fernandez-Landazuri S, Zubiri L, Gonzalez A. Circulating biomarkers in malignant melanoma. Adv Clin Chem. 2015;69:47–89.PubMedCrossRefGoogle Scholar
  89. 89.
    Davey RJ, Westhuizen A, Bowden NA. Metastatic melanoma treatment: combining old and new therapies. Crit Rev Oncol Hematol. 2016;98:242–53.PubMedCrossRefGoogle Scholar
  90. 90.
    Neagu M, Constantin C, Manda G, Margaritescu I. Biomarkers of metastatic melanoma. Biomark Med. 2009;3(1):71–89.PubMedCrossRefGoogle Scholar
  91. 91.
    Khoja L, Lorigan P, Dive C, Keilholz U, Fusi A. Circulating tumour cells as tumour biomarkers in melanoma: detection methods and clinical relevance. Ann Oncol. 2015;26(1):33–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Jain KK. Cancer biomarkers: current issues and future directions. Curr Opin Mol Ther. 2007;9(6):563–71.PubMedGoogle Scholar
  93. 93.
    Brinton LT, Sloane HS, Kester M, Kelly KA. Formation and role of exosomes in cancer. Cell Mol Life Sci. 2015;72(4):659–71.PubMedCrossRefGoogle Scholar
  94. 94.
    Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66(9):4795–801.PubMedCrossRefGoogle Scholar
  95. 95.
    Riches A, Campbell E, Borger E, Powis S. Regulation of exosome release from mammary epithelial and breast cancer cells – a new regulatory pathway. Eur J Cancer. 2014;50(5):1025–34.PubMedCrossRefGoogle Scholar
  96. 96.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Duijvesz D, Luider T, Bangma CH, Jenster G. Exosomes as biomarker treasure chests for prostate cancer. Eur Urol. 2011;59(5):823–31.PubMedCrossRefGoogle Scholar
  99. 99.
    Staubach S, Razawi H, Hanisch FG. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics. 2009;9(10):2820–35.PubMedCrossRefGoogle Scholar
  100. 100.
    Peng P, Yan Y, Keng S. Exosomes in the ascites of ovarian cancer patients: origin and effects on anti-tumor immunity. Oncol Rep. 2011;25(3):749–62.PubMedGoogle Scholar
  101. 101.
    Li Y, Zhang Y, Qiu F, Qiu Z. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis. 2011;32(15):1976–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Adamczyk KA, Klein-Scory S, Tehrani MM, Warnken U, Schmiegel W, Schnolzer M, et al. Characterization of soluble and exosomal forms of the EGFR released from pancreatic cancer cells. Life Sci. 2011;89(9–10):304–12.PubMedCrossRefGoogle Scholar
  103. 103.
    Szajnik M, Derbis M, Lach M, Patalas P, Michalak M, Drzewiecka H, et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale). 2013;Suppl 4:3.Google Scholar
  104. 104.
    Silva J, Garcia V, Rodriguez M, Compte M, Cisneros E, Veguillas P, et al. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer. 2012;51(4):409–18.PubMedCrossRefGoogle Scholar
  105. 105.
    Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104(10):3257–66.PubMedCrossRefGoogle Scholar
  106. 106.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.PubMedCrossRefGoogle Scholar
  108. 108.
    Delcayre A, Shu H, Le Pecq JB. Dendritic cell-derived exosomes in cancer immunotherapy: exploiting nature's antigen delivery pathway. Expert Rev Anticancer Ther. 2005;5(3):537–47.PubMedCrossRefGoogle Scholar
  109. 109.
    Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 2008;16(4):782–90.PubMedCrossRefGoogle Scholar
  110. 110.
    Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241–4.PubMedCrossRefGoogle Scholar
  111. 111.
    Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.PubMedCrossRefGoogle Scholar
  112. 112.
    Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012;56(2):293–304.PubMedCrossRefGoogle Scholar
  113. 113.
    Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, et al. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med. 2009;7:4.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    O’Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM, et al. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer. 2013;49(8):1845–59.PubMedCrossRefGoogle Scholar
  116. 116.
    Guo L, Guo N. Exosomes: potent regulators of tumor malignancy and potential bio-tools in clinical application. Crit Rev Oncol Hematol. 2015;95(3):346–58.PubMedCrossRefGoogle Scholar
  117. 117.
    Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720–30.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL. T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res. 2003;9(14):5113–9.PubMedGoogle Scholar
  119. 119.
    Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med. 2002;195(10):1303–16.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez M, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010;70(2):481–9.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011;108(37):15336–41.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 2009;4(4):e5219.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Guan M, Chen X, Ma Y, Tang L, Guan L, Ren X, et al. MDA-9 and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis. Tumour Biol. 2015;36(4):2973–82.PubMedCrossRefGoogle Scholar
  124. 124.
    Eldh M, Olofsson Bagge R, Lasser C, Svanvik J, Sjostrand M, Mattsson J, et al. MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer. 2014;14:962.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Riteau B, Faure F, Menier C, Viel S, Carosella ED, Amigorena S, et al. Exosomes bearing HLA-G are released by melanoma cells. Hum Immunol. 2003;64(11):1064–72.PubMedCrossRefGoogle Scholar
  126. 126.
    Alegre E, Rebmann V, Lemaoult J, Rodriguez C, Horn PA, Diaz-Lagares A, et al. In vivo identification of an HLA-G complex as ubiquitinated protein circulating in exosomes. Eur J Immunol. 2013;43(7):1933–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3):e30679.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3Google Scholar
  132. 132.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.PubMedCrossRefGoogle Scholar
  134. 134.
    Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–59.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MA, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8(6):1649–58.PubMedCrossRefGoogle Scholar
  137. 137.
    Guduric-Fuchs J, O’Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298–301.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57(6):833–40.PubMedCrossRefGoogle Scholar
  141. 141.
    Alegre E, Sanmamed MF, Rodriguez C, Carranza O, Martin-Algarra S, Gonzalez A. Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med. 2014;138(6):828–32.PubMedCrossRefGoogle Scholar
  142. 142.
    Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2016;98:12–23.Google Scholar
  143. 143.
    Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109(31):E2110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, et al. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 2015;34(20):2556–65.PubMedCrossRefGoogle Scholar
  145. 145.
    Wu J, Qian J, Li C, Kwok L, Cheng F, Liu P, et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle. 2010;9(9):1809–18.PubMedCrossRefGoogle Scholar
  146. 146.
    Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, et al. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One. 2013;8(4):e60687.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107(7)Google Scholar
  148. 148.
    Gajos-Michniewicz A, Duechler M, Czyz M. MiRNA in melanoma-derived exosomes. Cancer Lett. 2014;347(1):29–37.PubMedCrossRefGoogle Scholar
  149. 149.
    Leibowitz-Amit R, Sidi Y, Avni D. Aberrations in the micro-RNA biogenesis machinery and the emerging roles of micro-RNAs in the pathogenesis of cutaneous malignant melanoma. Pigment Cell Melanoma Res. 2012;25(6):740–57.PubMedCrossRefGoogle Scholar
  150. 150.
    Streicher KL, Zhu W, Lehmann KP, Georgantas RW, Morehouse CA, Brohawn P, et al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene. 2012;31(12):1558–70.PubMedCrossRefGoogle Scholar
  151. 151.
    Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y, et al. Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer. 2012;11:44.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Chan E, Patel R, Nallur S, Ratner E, Bacchiocchi A, Hoyt K, et al. MicroRNA signatures differentiate melanoma subtypes. Cell Cycle. 2011;10(11):1845–52.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S, et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One. 2012;7(10):e46874.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kanemaru H, Fukushima S, Yamashita J, Honda N, Oyama R, Kakimoto A, et al. The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci. 2011;61(3):187–93.PubMedCrossRefGoogle Scholar
  155. 155.
    Friedman EB, Shang S, de Miera EV, Fog JU, Teilum MW, Ma MW, et al. Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med. 2012;10:155.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Fleming NH, Zhong J, da Silva IP, Vega-Saenz de Miera E, Brady B, Han SW, et al. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer. 2015;121(1):51–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, Vega-Saenz de Miera E, et al. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell. 2011;20(1):104–18.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Satzger I, Mattern A, Kuettler U, Weinspach D, Voelker B, Kapp A, et al. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer. 2010;126(11):2553–62.PubMedGoogle Scholar
  159. 159.
    Srivastava SK, Bhardwaj A, Singh S, Arora S, Wang B, Grizzle WE, et al. MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis. 2011;32(12):1832–9.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M, et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene. 2012;31(4):432–45.PubMedCrossRefGoogle Scholar
  161. 161.
    Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest. 2010;120(11):4141–54.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Shiiyama R, Fukushima S, Jinnin M, Yamashita J, Miyashita A, Nakahara S, et al. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res. 2013;23(5):366–72.PubMedCrossRefGoogle Scholar
  163. 163.
    Ragusa M, Barbagallo C, Statello L, Caltabiano R, Russo A, Puzzo L, et al. miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: pathological and diagnostic implications. Cancer Biol Ther. 2015;16(9):1387–96.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil. 1948;142(3–4):241–3.PubMedGoogle Scholar
  165. 165.
    Koffler D, Agnello V, Winchester R, Kunkel HG. The occurrence of single-stranded DNA in the serum of patients with systemic lupus erythematosus and other diseases. J Clin Invest. 1973;52(1):198–204.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46(5):318–22.PubMedCrossRefGoogle Scholar
  167. 167.
    Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.PubMedGoogle Scholar
  168. 168.
    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Mouliere F, El Messaoudi S, Pang D, Dritschilo A, Thierry AR. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol. 2014;8(5):927–41.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Suzuki N, Kamataki A, Yamaki J, Homma Y. Characterization of circulating DNA in healthy human plasma. Clin Chim Acta. 2008;387(1–2):55–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Pinzani P, Salvianti F, Zaccara S, Massi D, De Giorgi V, Pazzagli M, et al. Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative considerations. Clin Chim Acta. 2011;412(23–24):2141–5.PubMedCrossRefGoogle Scholar
  172. 172.
    Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.PubMedCrossRefGoogle Scholar
  173. 173.
    El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222–30.PubMedCrossRefGoogle Scholar
  174. 174.
    Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med (Auckland, NZ). 2012;42(7):565–86.CrossRefGoogle Scholar
  175. 175.
    Sozzi G, Roz L, Conte D, Mariani L, Andriani F, Verderio P, et al. Effects of prolonged storage of whole plasma or isolated plasma DNA on the results of circulating DNA quantification assays. J Natl Cancer Inst. 2005;97(24):1848–50.PubMedCrossRefGoogle Scholar
  176. 176.
    Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.PubMedCrossRefGoogle Scholar
  177. 177.
    Pinzani P, Santucci C, Mancini I, Simi L, Salvianti F, Pratesi N, et al. BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin Chim Acta. 2011;412(11–12):901–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Pinzani P, Salvianti F, Cascella R, Massi D, De Giorgi V, Pazzagli M, et al. Allele specific Taqman-based real-time PCR assay to quantify circulating BRAFV600E mutated DNA in plasma of melanoma patients. Clin Chim Acta. 2010;411(17–18):1319–24.PubMedCrossRefGoogle Scholar
  179. 179.
    Board RE, Ellison G, Orr MC, Kemsley KR, McWalter G, Blockley LY, et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer. 2009;101(10):1724–30.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Sanmamed MF, Fernandez-Landazuri S, Rodriguez C, Zarate R, Lozano MD, Zubiri L, et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 2015;61(1):297–304.PubMedCrossRefGoogle Scholar
  181. 181.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O'Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20(6):1698–705.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Wang P, Bahreini A, Gyanchandani R, Lucas PC, Hartmaier RJ, Watters RJ, et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions and cell free DNA of breast cancer patients. Clin Cancer Res. 2016;22(5):1130–137.Google Scholar
  185. 185.
    De Giorgi V, Pinzani P, Salvianti F, Grazzini M, Orlando C, Lotti T, et al. Circulating benign nevus cells detected by ISET technique: warning for melanoma molecular diagnosis. Arch Dermatol. 2010;146(10):1120–4.PubMedCrossRefGoogle Scholar
  186. 186.
    Chang GA, Tadepalli JS, Shao Y, Zhang Y, Weiss S, Robinson E, et al. Sensitivity of plasma BRAF and NRAS cell-free DNA assays to detect metastatic melanoma in patients with low RECIST scores and non-RECIST disease progression. Mol Oncol. 2016;10(1):157–65.Google Scholar
  187. 187.
    Santiago-Walker A, Gagnon R, Mazumdar J, Casey M, Long GV, Schadendorf D, et al. Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clin Cancer Res. 2016;22(3):567–74.Google Scholar
  188. 188.
    Yancovitz M, Yoon J, Mikhail M, Gai W, Shapiro RL, Berman RS, et al. Detection of mutant BRAF alleles in the plasma of patients with metastatic melanoma. J Mol Diagn: JMD. 2007;9(2):178–83.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Daniotti M, Vallacchi V, Rivoltini L, Patuzzo R, Santinami M, Arienti F, et al. Detection of mutated BRAFV600E variant in circulating DNA of stage III-IV melanoma patients. Int J Cancer. 2007;120(11):2439–44.PubMedCrossRefGoogle Scholar
  190. 190.
    Gonzalez-Cao M, Mayo-de-Las-Casas C, Molina-Vila MA, De Mattos-Arruda L, Munoz-Couselo E, Manzano JL, et al. BRAF mutation analysis in circulating free tumor DNA of melanoma patients treated with BRAF inhibitors. Melanoma Res. 2015;25(6):486–95.PubMedCrossRefGoogle Scholar
  191. 191.
    Diaz-Lagares A, Alegre E, Arroyo A, Gonzalez-Cao M, Zudaire ME, Viteri S, et al. Evaluation of multiple serum markers in advanced melanoma. Tumour Biol. 2011;32(6):1155–61.PubMedCrossRefGoogle Scholar
  192. 192.
    Shinozaki M, O'Day SJ, Kitago M, Amersi F, Kuo C, Kim J, et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res. 2007;13(7):2068–74.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Saint-Jean M, Quereux G, Nguyen JM, Peuvrel L, Brocard A, Vallee A, et al. Is a single BRAF wild-type test sufficient to exclude melanoma patients from vemurafenib therapy? J Invest Dermatol. 2014;134(5):1468–70.PubMedCrossRefGoogle Scholar
  194. 194.
    Tsao SC, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198.PubMedCrossRefGoogle Scholar
  195. 195.
    Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6(39):42008–18.Google Scholar
  196. 196.
    Greenberg ES, Chong KK, Huynh KT, Tanaka R, Hoon DS. Epigenetic biomarkers in skin cancer. Cancer Lett. 2014;342(2):170–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Hoon DS, Spugnardi M, Kuo C, Huang SK, Morton DL, Taback B. Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene. 2004;23(22):4014–22.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Marini A, Mirmohammadsadegh A, Nambiar S, Gustrau A, Ruzicka T, Hengge UR. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma. J Invest Dermatol. 2006;126(2):422–31.PubMedCrossRefGoogle Scholar
  199. 199.
    Mori T, O'Day SJ, Umetani N, Martinez SR, Kitago M, Koyanagi K, et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol. 2005;23(36):9351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Mori T, Martinez SR, O’Day SJ, Morton DL, Umetani N, Kitago M, et al. Estrogen receptor-alpha methylation predicts melanoma progression. Cancer Res. 2006;66(13):6692–8.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Taback B, Fujiwara Y, Wang HJ, Foshag LJ, Morton DL, Hoon DS. Prognostic significance of circulating microsatellite markers in the plasma of melanoma patients. Cancer Res. 2001;61(15):5723–6.PubMedGoogle Scholar
  202. 202.
    Taback B, O'Day SJ, Boasberg PD, Shu S, Fournier P, Elashoff R, et al. Circulating DNA microsatellites: molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J Natl Cancer Inst. 2004;96(2):152–6.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Smith B, Selby P, Southgate J, Pittman K, Bradley C, Blair GE. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet. 1991;338(8777):1227–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Hoshimoto S, Shingai T, Morton DL, Kuo C, Faries MB, Chong K, et al. Association between circulating tumor cells and prognosis in patients with stage III melanoma with sentinel lymph node metastasis in a phase III international multicenter trial. J Clin Oncol. 2012;30(31):3819–26.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Koyanagi K, O'Day SJ, Gonzalez R, Lewis K, Robinson WA, Amatruda TT, et al. Serial monitoring of circulating melanoma cells during neoadjuvant biochemotherapy for stage III melanoma: outcome prediction in a multicenter trial. J Clin Oncol. 2005;23(31):8057–64.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Zimmerer RM, Matthiesen P, Kreher F, Kampmann A, Spalthoff S, Jehn P, et al. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo. Microvasc Res. 2016;104:46–54.PubMedCrossRefGoogle Scholar
  207. 207.
    Koyanagi K, Kuo C, Nakagawa T, Mori T, Ueno H, Lorico Jr AR, et al. Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. Clin Chem. 2005;51(6):981–8.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Goto Y, Arigami T, Murali R, Scolyer RA, Tanemura A, Takata M, et al. High molecular weight-melanoma-associated antigen as a biomarker of desmoplastic melanoma. Pigment Cell Melanoma Res. 2010;23(1):137–40.PubMedCrossRefGoogle Scholar
  209. 209.
    Gray ES, Reid AL, Bowyer S, Calapre L, Siew K, Pearce R, et al. Circulating melanoma cell subpopulations: their heterogeneity and differential responses to treatment. J Invest Dermatol. 2015;135(8):2040–8.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Miyashiro I, Kuo C, Huynh K, Iida A, Morton D, Bilchik A, et al. Molecular strategy for detecting metastatic cancers with use of multiple tumor-specific MAGE-A genes. Clin Chem. 2001;47(3):505–12.PubMedGoogle Scholar
  211. 211.
    Koyanagi K, Mori T, O'Day SJ, Martinez SR, Wang HJ, Hoon DS. Association of circulating tumor cells with serum tumor-related methylated DNA in peripheral blood of melanoma patients. Cancer Res. 2006;66(12):6111–7.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Kitago M, Koyanagi K, Nakamura T, Goto Y, Faries M, O'Day SJ, et al. mRNA expression and BRAF mutation in circulating melanoma cells isolated from peripheral blood with high molecular weight melanoma-associated antigen-specific monoclonal antibody beads. Clin Chem. 2009;55(4):757–64.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Khoja L, Lorigan P, Zhou C, Lancashire M, Booth J, Cummings J, et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J Invest Dermatol. 2013;133(6):1582–90.PubMedCrossRefGoogle Scholar
  214. 214.
    Rodic S, Mihalcioiu C, Saleh RR. Detection methods of circulating tumor cells in cutaneous melanoma: a systematic review. Crit Rev Oncol Hematol. 2014;91(1):74–92.PubMedCrossRefGoogle Scholar
  215. 215.
    Clawson GA, Kimchi E, Patrick SD, Xin P, Harouaka R, Zheng S, et al. Circulating tumor cells in melanoma patients. PLoS One. 2012;7(7):e41052.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Fusi A, Reichelt U, Busse A, Ochsenreither S, Rietz A, Maisel M, et al. Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. J Invest Dermatol. 2011;131(2):487–94.PubMedCrossRefGoogle Scholar
  217. 217.
    Osella-Abate S, Savoia P, Quaglino P, Fierro MT, Leporati C, Ortoncelli M, et al. Tyrosinase expression in the peripheral blood of stage III melanoma patients is associated with a poor prognosis: a clinical follow-up study of 110 patients. Br J Cancer. 2003;89(8):1457–62.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Clawson GA. Cancer. Fusion for moving. Science. 2013;342(6159):699–700.PubMedCrossRefGoogle Scholar
  219. 219.
    Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156(1):57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep. 2013;3:1259.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Khoja L, Shenjere P, Hodgson C, Hodgetts J, Clack G, Hughes A, et al. Prevalence and heterogeneity of circulating tumour cells in metastatic cutaneous melanoma. Melanoma Res. 2014;24(1):40–6.PubMedCrossRefGoogle Scholar
  222. 222.
    Onstenk W, Gratama JW, Foekens JA, Sleijfer S. Towards a personalized breast cancer treatment approach guided by circulating tumor cell (CTC) characteristics. Cancer Treat Rev. 2013;39(7):691–700.PubMedCrossRefGoogle Scholar
  223. 223.
    Max N, Wolf K, Thiel E, Keilholz U. Quantitative nested real-time RT-PCR specific for tyrosinase transcripts to quantitate minimal residual disease. Clin Chim Acta. 2002;317(1–2):39–46.PubMedCrossRefGoogle Scholar
  224. 224.
    de Vries TJ, Fourkour A, Punt CJ, van de Locht LT, Wobbes T, van den Bosch S, et al. Reproducibility of detection of tyrosinase and MART-1 transcripts in the peripheral blood of melanoma patients: a quality control study using real-time quantitative RT-PCR. Br J Cancer. 1999;80(5–6):883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Foss AJ, Guille MJ, Occleston NL, Hykin PG, Hungerford JL, Lightman S. The detection of melanoma cells in peripheral blood by reverse transcription-polymerase chain reaction. Br J Cancer. 1995;72(1):155–9.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Schuster R, Bechrakis NE, Stroux A, Busse A, Schmittel A, Thiel E, et al. Prognostic relevance of circulating tumor cells in metastatic uveal melanoma. Oncology. 2011;80(1–2):57–62.PubMedCrossRefGoogle Scholar
  227. 227.
    Sarantou T, Chi DD, Garrison DA, Conrad AJ, Schmid P, Morton DL, et al. Melanoma-associated antigens as messenger RNA detection markers for melanoma. Cancer Res. 1997;57(7):1371–6.PubMedGoogle Scholar
  228. 228.
    Keilholz U, Willhauck M, Rimoldi D, Brasseur F, Dummer W, Rass K, et al. Reliability of reverse transcription-polymerase chain reaction (RT-PCR)-based assays for the detection of circulating tumour cells: a quality-assurance initiative of the EORTC melanoma cooperative group. Eur J Cancer. 1998;34(5):750–3.PubMedCrossRefGoogle Scholar
  229. 229.
    Xi L, Nicastri DG, El-Hefnawy T, Hughes SJ, Luketich JD, Godfrey TE. Optimal markers for real-time quantitative reverse transcription PCR detection of circulating tumor cells from melanoma, breast, colon, esophageal, head and neck, and lung cancers. Clin Chem. 2007;53(7):1206–15.PubMedCrossRefGoogle Scholar
  230. 230.
    Samija I, Lukac J, Maric-Brozic J, Buljan M, Alajbeg I, Kovacevic D, et al. Prognostic value of microphthalmia-associated transcription factor and tyrosinase as markers for circulating tumor cells detection in patients with melanoma. Melanoma Res. 2010;20(4):293–302.PubMedCrossRefGoogle Scholar
  231. 231.
    Reynolds SR, Albrecht J, Shapiro RL, Roses DF, Harris MN, Conrad A, et al. Changes in the presence of multiple markers of circulating melanoma cells correlate with clinical outcome in patients with melanoma. Clin Cancer Res. 2003;9(4):1497–502.PubMedGoogle Scholar
  232. 232.
    Hofman V, Ilie M, Long-Mira E, Giacchero D, Butori C, Dadone B, et al. Usefulness of immunocytochemistry for the detection of the BRAF(V600E) mutation in circulating tumor cells from metastatic melanoma patients. J Invest Dermatol. 2013;133(5):1378–81.PubMedCrossRefGoogle Scholar
  233. 233.
    Huang SK, Hoon DS. Liquid biopsy utility for the surveillance of cutaneous malignant melanoma patients. Oncotarget. 2015;6(39):42008–18.Google Scholar
  234. 234.
    Ma J, Frank MH. Isolation of circulating melanoma cells. Methods Mol Biol. 2015.Google Scholar
  235. 235.
    Klinac D, Gray ES, Freeman JB, Reid A, Bowyer S, Millward M, et al. Monitoring changes in circulating tumour cells as a prognostic indicator of overall survival and treatment response in patients with metastatic melanoma. BMC Cancer. 2014;14:423.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Voit C, Kron M, Rademaker J, Schwurzer-Voit M, Sterry W, Weber L, et al. Molecular staging in stage II and III melanoma patients and its effect on long-term survival. J Clin Oncol. 2005;23(6):1218–27.PubMedCrossRefGoogle Scholar
  237. 237.
    Tsao H, Nadiminti U, Sober AJ, Bigby M. A meta-analysis of reverse transcriptase-polymerase chain reaction for tyrosinase mRNA as a marker for circulating tumor cells in cutaneous melanoma. Arch Dermatol. 2001;137(3):325–30.PubMedGoogle Scholar
  238. 238.
    Fusi A, Collette S, Busse A, Suciu S, Rietz A, Santinami M, et al. Circulating melanoma cells and distant metastasis-free survival in stage III melanoma patients with or without adjuvant interferon treatment (EORTC 18991 side study). Eur J Cancer. 2009;45(18):3189–97.PubMedCrossRefGoogle Scholar
  239. 239.
    Xu MJ, Dorsey JF, Amaravadi R, Karakousis G, Simone 2nd CB, Xu X, et al. Circulating tumor cells, DNA, and mRNA: potential for clinical utility in patients with melanoma. Oncologist. 2016;21(1):84–94.PubMedCrossRefGoogle Scholar
  240. 240.
    Hoon DS, Bostick P, Kuo C, Okamoto T, Wang HJ, Elashoff R, et al. Molecular markers in blood as surrogate prognostic indicators of melanoma recurrence. Cancer Res. 2000;60(8):2253–7.PubMedGoogle Scholar
  241. 241.
    Ruiz C, Li J, Luttgen MS, Kolatkar A, Kendall JT, Flores E, et al. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Phys Biol. 2015;12(1):016008.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Estíbaliz Alegre
    • 1
  • Leyre Zubiri
    • 2
  • Juan Pablo Fusco
    • 2
  • Natalia Ramírez
    • 3
  • Álvaro González
    • 1
  • Ignacio Gil-Bazo
    • 1
    • 4
    Email author
  1. 1.Department of BiochemistryClínica Universidad de Navarra, IDISNAPamplonaSpain
  2. 2.Department of OncologyClínica Universidad de Navarra, IDISNAPamplonaSpain
  3. 3.Oncohematology Research GroupNavarrabiomed, Miguel Servet Foundation, IDISNA (Navarra’s Health Research Institute)PamplonaSpain
  4. 4.Program of Solid Tumors and BiomarkersCenter for Applied Medical Research, IDISNAPamplonaSpain

Personalised recommendations