Targeting MSCs for Hard Tissue Regeneration

  • Giorgio MoriEmail author
  • Adriana Di Benedetto
  • Francesca Posa
  • Lorenzo Lo Muzio
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Bone and cartilage injuries deriving from trauma, tumors, inflammation diseases, as well as natural aging, cause debilitation among affected individuals and represent a challenge for medicine. In particular, bone is subjected to frequent age and disease-related degeneration with mass decrease: the osteoporosis. Moreover tumors, trauma and chronic inflammation can determine localized bone loss. On the other hands, a major cause of disability in middle-aged and older people is represented by joint pain. Thus cartilage degeneration due to primary osteoarthritis, trauma and injuries resulting from sport activities are all possible causes of this kind of pain [1]. As the cartilage is a tissue with a little self-regenerative capacity, any alteration of its integrity might be carried on for years and eventually lead to further degeneration [2].


Bone Regeneration Periodontal Ligament Dental Pulp Chondrogenic Differentiation Autologous Chondrocyte Implantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998a;47:487–504.PubMedGoogle Scholar
  2. 2.
    O’Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80(12):1795–812.CrossRefPubMedGoogle Scholar
  3. 3.
    Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998b;47:477–86.PubMedGoogle Scholar
  4. 4.
    Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther. 1998;28(4):203–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276(5309):75–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J. Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn. 2003;226(2):190–201.CrossRefPubMedGoogle Scholar
  7. 7.
    Li Q, Yang H, Zhong TP. Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics. 2015;42(2):57–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Mankin HJ, Hornicek FJ, Raskin KA. Infection in massive bone allografts. Clin Orthop Relat Res. 2005;432:210–6.CrossRefGoogle Scholar
  9. 9.
    Schwartz CE, Martha JF, Kowalski P, Wang DA, Bode R, Li L, Kim DH. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome. Health Qual Life Outcomes. 2009;7:49.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bhumiratana S, Vunjak-Novakovic G. Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med. 2012;1(1):64–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Carbone A, Valente M, Annacontini L, Castellani S, Di Gioia S, Parisi D, Rucci M, Belgiovine G, Colombo C, Di Benedetto A, et al. Adipose-derived mesenchymal stromal (stem) cells differentiate to osteoblast and chondroblast lineages upon incubation with conditioned media from dental pulp stem cell-derived osteoblasts and auricle cartilage chondrocytes. J Biol Regul Homeost Agents. 2016;30(1):111–22.PubMedGoogle Scholar
  12. 12.
    Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Cipitria A, Lange C, Schell H, Wagermaier W, Reichert JC, Hutmacher DW, Fratzl P, Duda GN. Porous scaffold architecture guides tissue formation. J Bone Miner Res. 2012;27(6):1275–88.CrossRefPubMedGoogle Scholar
  14. 14.
    Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. J Biomed Mater Res A. 2016;104(1):264–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, et al. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. J Biomater Sci Polym Ed. 2014;25(16):1856–74.CrossRefPubMedGoogle Scholar
  16. 16.
    Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005;8(4):277–84.CrossRefPubMedGoogle Scholar
  17. 17.
    Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg. 2014;3(1):3–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gupta A, Woods MD, Illingworth KD, Niemeier R, Schafer I, Cady C, Filip P, El-Amin 3rd SF. Single walled carbon nanotube composites for bone tissue engineering. J Orthop Res. 2013;31(9):1374–81.Google Scholar
  19. 19.
    Ning L, Malmstrom H, Ren YF. Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration. J Oral Implantol. 2015;41(1):45–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Perez RA, Ginebra MP. Injectable collagen/alpha-tricalcium phosphate cement: collagen-mineral phase interactions and cell response. J Mater Sci Mater Med. 2013;24(2):381–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013;29(1):174–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, Giardino R, Facchini A. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials. 2001;22(17):2417–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Marcacci M, Zaffagnini S, Kon E, Visani A, Iacono F, Loreti I. Arthroscopic autologous chondrocyte transplantation: technical note. Knee Surg Sports Traumatol Arthrosc. 2002;10(3):154–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Cherubino P, Grassi FA, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J Orthop Surg (Hong Kong). 2003;11(1):10–5.CrossRefGoogle Scholar
  25. 25.
    Kimura T, Yasui N, Ohsawa S, Ono K. Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin Orthop. 1984;186(231):231–9.Google Scholar
  26. 26.
    Speer DP, Chvapil M, Vorz RG, Holmes MD. Enhancement of healing in osteochondral defects by collagen sponge implants. Clin Orthop Relat Res. 1979;144:326–35.Google Scholar
  27. 27.
    Grande D, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34(2):211–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee. 2006;13(3):203–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016.Google Scholar
  30. 30.
    BIOSEED®-C I. 2016. Treatment with BIOSEED®-C. http://biotissuech/bioseed/patients/bioseed-c/treatment-with-bioseed-c/.Google Scholar
  31. 31.
    Melton JT, Wilson AJ, Chapman-Sheath P, Cossey AJ. TruFit CB bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices. 2010;7(3):333–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil. 2002;10(1):62–70.CrossRefPubMedGoogle Scholar
  33. 33.
    Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005;23(2):425–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Hamada T, Sakai T, Hiraiwa H, Nakashima M, Ono Y, Mitsuyama H, Ishiguro N. Surface markers and gene expression to characterize the differentiation of monolayer expanded human articular chondrocytes. Nagoya J Med Sci. 2013;75(1–2):101–11.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Giovannini S, Diaz-Romero J, Aigner T, Mainil-Varlet P, Nesic D. Population doublings and percentage of S100-positive cells as predictors of in vitro chondrogenicity of expanded human articular chondrocytes. J Cell Physiol. 2010;222:411–20.CrossRefPubMedGoogle Scholar
  36. 36.
    Forriol F. Growth factors in cartilage and meniscus repair. Injury. 2009;40(Suppl 3):S12–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Cucchiarini M, Venkatesan JK, Ekici M, Schmitt G, Madry H. Human mesenchymal stem cells overexpressing therapeutic genes: from basic science to clinical applications for articular cartilage repair. Biomed Mater Eng. 2012;22(4):197–208.PubMedGoogle Scholar
  38. 38.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY). 1999;284(5411):143–7.CrossRefGoogle Scholar
  39. 39.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230–47.CrossRefPubMedGoogle Scholar
  40. 40.
    Ren H, Sang Y, Zhang F, Liu Z, Qi N, Chen Y. Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells Int. 2016;2016:3516574.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem cells (Dayton, Ohio). 2006;24(11):2493–503.CrossRefGoogle Scholar
  42. 42.
    About I. Dentin–pulp regeneration: the primordial role of the microenvironment and its modification by traumatic injuries and bioactive materials. Endod Top. 2013;28(1):61–89.CrossRefGoogle Scholar
  43. 43.
    Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Lo Muzio L, Colucci S, Mori C, Grassi FR, Grano M. Dental pulp stem cells: osteogenic differentiation and gene expression. Ann N Y Acad Sci. 2011;1237:47–52.CrossRefPubMedGoogle Scholar
  45. 45.
    Mori G, Centonze M, Brunetti G, Ballini A, Oranger A, Mori C, Lo Muzio L, Tete S, Ciccolella F, Colucci S, et al. Osteogenic properties of human dental pulp stem cells. J Biol Regul Homeost Agents. 2010;24(2):167–75.PubMedGoogle Scholar
  46. 46.
    Mori G, Ballini A, Carbone C, Oranger A, Brunetti G, Di Benedetto A, Rapone B, Cantore S, Di Comite M, Colucci S, et al. Osteogenic differentiation of dental follicle stem cells. Int J Med Sci. 2012;9(6):480–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Di Benedetto A, Brunetti G, Posa F, Ballini A, Grassi FR, Colaianni G, Colucci S, Rossi E, Cavalcanti-Adam EA, Lo Muzio L, et al. Osteogenic differentiation of mesenchymal stem cells from dental bud: role of integrins and cadherins. Stem Cell Res. 2015;15(3):618–28.CrossRefPubMedGoogle Scholar
  48. 48.
    Narcisi R, Cleary MA, Brama PA, Hoogduijn MJ, Tuysuz N, ten Berge D, van Osch GJ. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem cell reports. 2015;4(3):459–72.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Tang Y, Wang B. Gene- and stem cell-based therapeutics for cartilage regeneration and repair. Stem Cell Res Ther. 2015;6:78.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dewan AK, Gibson MA, Elisseeff JH, Trice ME. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int. 2014;2014:11.CrossRefGoogle Scholar
  51. 51.
    Scott MA, Levi B, Askarinam A, Nguyen A, Rackohn T, Ting K, Soo C, James AW. Brief review of models of ectopic bone formation. Stem Cells Dev. 2012;21(5):655–67.CrossRefPubMedGoogle Scholar
  52. 52.
    Ma D, Ren L, Liu Y, Chen F, Zhang J, Xue Z, Mao T. Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. J Orthop Res. 2010;28(5):697–702.PubMedGoogle Scholar
  53. 53.
    Kempen DH, Lu L, Hefferan TE, Creemers LB, Heijink A, Maran A, Dhert WJ, Yaszemski MJ. Enhanced bone morphogenetic protein-2-induced ectopic and orthotopic bone formation by intermittent parathyroid hormone (1-34) administration. Tissue Eng A. 2010;16(12):3769–77.CrossRefGoogle Scholar
  54. 54.
    Park JC, So SS, Jung IH, Yun JH, Choi SH, Cho KS, Kim CS. Induction of bone formation by Escherichia Coli-expressed recombinant human bone morphogenetic protein-2 using block-type macroporous biphasic calcium phosphate in orthotopic and ectopic rat models. J Periodontal Res. 2011;46(6):682–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Morad G, Kheiri L, Khojasteh A. Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature. Arch Oral Biol. 2013;58(12):1818–27.CrossRefPubMedGoogle Scholar
  56. 56.
    Liu N, Lyu X, Fan H, Shi J, Hu J, Luo E. Animal models for craniofacial reconstruction by stem/stromal cells. Curr Stem Cell Res Ther. 2014;9(3):174–86.CrossRefPubMedGoogle Scholar
  57. 57.
    Mardas N, Dereka X, Donos N, Dard M. Experimental model for bone regeneration in oral and cranio-maxillo-facial surgery. J Investig Surg. 2014;27(1):32–49.CrossRefGoogle Scholar
  58. 58.
    Vertenten G, Gasthuys F, Cornelissen M, Schacht E, Vlaminck L. Enhancing bone healing and regeneration: present and future perspectives in veterinary orthopaedics. Vet Comp Orthop Traumatol. 2010;23(3):153–62.PubMedGoogle Scholar
  59. 59.
    Cheng G, Li Z, Xing X, Li DQ, Li ZB. Multiple inoculations of bone marrow stromal cells into beta-tricalcium phosphate/chitosan scaffolds enhances the formation and reconstruction of new bone. Int J Oral Maxillofac Implants. 2016;31(1):204–15.CrossRefPubMedGoogle Scholar
  60. 60.
    Ren T, Ren J, Jia X, Pan K. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A. 2005;74(4):562–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Wang X, Xing H, Zhang G, Wu X, Zou X, Feng L, Wang D, Li M, Zhao J, Du J, et al. Restoration of a critical mandibular bone defect using human alveolar bone-derived stem cells and porous Nano-HA/collagen/PLA scaffold. Stem Cells Int. 2016;2016:8741641.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kuo TF, Lee SY, Wu HD, Poma M, Wu YW, Yang JC. An in vivo swine study for xeno-grafts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs). Mater Sci Eng C Mater Biol Appl. 2015;50:19–23.CrossRefPubMedGoogle Scholar
  63. 63.
    Bressan E, Botticelli D, Sivolella S, Bengazi F, Guazzo R, Sbricoli L, Ricci S, Ferroni L, Gardin C, Velez JU, et al. Adipose-derived stem cells as a tool for dental implant Osseointegration: an experimental study in the dog. Int J Mol Cell Med. 2015;4(4):197–208.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Feng Z, Liu J, Shen C, Lu N, Zhang Y, Yang Y, Qi F. Biotin-avidin mediates the binding of adipose-derived stem cells to a porous beta-tricalcium phosphate scaffold: mandibular regeneration. Exp Ther Med. 2016;11(3):737–46.PubMedGoogle Scholar
  65. 65.
    Trofin EA, Monsarrat P, Kemoun P. Cell therapy of periodontium: from animal to human? Front Physiol. 2013;4:325.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299–308.Google Scholar
  67. 67.
    Annibali S, Bellavia D, Ottolenghi L, Cicconetti A, Cristalli MP, Quaranta R, Pilloni A. Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial "critical size" defect: preliminary data. J Biomed Mater Res B Appl Biomater. 2014;102(4):815–25.CrossRefPubMedGoogle Scholar
  68. 68.
    Asutay F, Polat S, Gul M, Subasi C, Kahraman SA, Karaoz E. The effects of dental pulp stem cells on bone regeneration in rat calvarial defect model: micro-computed tomography and histomorphometric analysis. Arch Oral Biol. 2015;60(12):1729–35.CrossRefPubMedGoogle Scholar
  69. 69.
    Kim BS, Choi MK, Yoon JH, Lee J. Evaluation of bone regeneration with biphasic calcium phosphate substitute implanted with bone morphogenetic protein 2 and mesenchymal stem cells in a rabbit calvarial defect model. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(1):2–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.CrossRefPubMedGoogle Scholar
  71. 71.
    Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89(5):338–44.CrossRefPubMedGoogle Scholar
  72. 72.
    Tognana E, Borrione A, De Luca C, Pavesio A. Hyalograft C: hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs. 2007;186(2):97–103.CrossRefPubMedGoogle Scholar
  73. 73.
    Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, Chansiri K. Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thail. 2011;94(3):395–400.Google Scholar
  74. 74.
    Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B. Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med. 2010;38(9):1857–69.CrossRefPubMedGoogle Scholar
  75. 75.
    Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1424–33.CrossRefPubMedGoogle Scholar
  76. 76.
    Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006;54(10):3254–66.CrossRefPubMedGoogle Scholar
  77. 77.
    Nazempour A, Van Wie BJ. Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng. 2016;44(5):1325–54.CrossRefPubMedGoogle Scholar
  78. 78.
    Giannoudis PV, Einhorn TA. Bone morphogenetic proteins in musculoskeletal medicine. Injury. 2009;40(Suppl 3):S1–3.Google Scholar
  79. 79.
    Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344(5):385–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Tasso R, Ulivi V, Reverberi D, Lo Sicco C, Descalzi F, Cancedda R. In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche. Stem Cells Dev. 2013;22(24):3178–91.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532–53.CrossRefPubMedGoogle Scholar
  82. 82.
    Aston JE, Bentley G. Repair of articular surfaces by allografts of articular and growth-plate cartilage. J Bone Joint Surg Br. 1986;68(1):29–35.CrossRefPubMedGoogle Scholar
  83. 83.
    Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng. 1998;4(4):429–44.CrossRefPubMedGoogle Scholar
  84. 84.
    Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther. 1998;28(4):241–51.CrossRefPubMedGoogle Scholar
  85. 85.
    Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, Richardson JB. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):R60–73.CrossRefPubMedGoogle Scholar
  86. 86.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.CrossRefPubMedGoogle Scholar
  87. 87.
    Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-A(Suppl 2):17–24.CrossRefGoogle Scholar
  88. 88.
    Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med. 2008;36(11):2091–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Thomson RC, Wake MC, Yaszemski MJ, Mikos AG. Biodegradable polymer scaffolds to regenerate organs. In: Peppas NA, Langer RS, editors. Biopolymers II. Berlin: Springer; 1995. p. 245–74.CrossRefGoogle Scholar
  90. 90.
    Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I traditional factors. Tiss Eng. 2001;7(6):679–89.CrossRefGoogle Scholar
  91. 91.
    Takahashi T, Ogasawara T, Asawa Y, Mori Y, Uchinuma E, Takato T, Hoshi K. Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Eng. 2007;13(7):1583–92.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giorgio Mori
    • 1
    Email author
  • Adriana Di Benedetto
    • 1
  • Francesca Posa
    • 1
  • Lorenzo Lo Muzio
    • 1
  1. 1.Department of Clinical and Experimental MedicineMedical School, University of FoggiaFoggiaItaly

Personalised recommendations