Skip to main content

β-Lactams Through Single Bond Ring Closing: Methods, Transformations and Bioactivity

  • Chapter
  • First Online:
Beta-Lactams

Abstract

Because the renewed interest of β–lactams in organic and medicinal chemistry, research in this field continues producing new appealing progresses. This chapter will cover significant success in the synthesis of innovative 2-azetidinones through the formation of a single bond, either C–C or N–C. While the C2–C3 bond formation has scarcely been explored, the intramolecular cyclization through the C3–C4 bond using different approaches are among the most effectively harnessed procedures. Thus, enolate-mediated alkylation and Michael conjugate additions provided quaternary β–lactams in a nice stereoselective way, through the memory of chirality phenomenon. Here, the adaptation of the procedure to solid-phase methodologies opens the possible generation of molecular diversity based on this heterocyclic skeleton. Other main C3–C4-forming strategies are the catalyzed C–H insertion of α–diazoacetamides, the oxidative bond formation and different radical cyclizations, leading to original 2-azetidinones, including some spiro derivatives. Classical methodologies, like the use of Grignard reagents, the base-induced cyclization of β–aminoesters and the application of coupling methods to β–amino acids, continued being applied for the N1–C2 ring closure. Different procedures have also been described for the β–lactam synthesis through the N1–C4 bond. In this respect, apart from the initial Mitsunobu reaction-based approaches, metal-catalyzed C–H functionalization and oxidative cyclization of amides are valuable, more recent methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdellaoui H, Xu J (2014) Versatile synthesis of 4-spiro-β-lactam-3-carbonitriles via the intramolecular nucleophilic cyclization of N-(p-hydroxyphenyl)cyanoacetamides. Tetrahedron 70(29):4323–4330. doi:10.1016/j.tet.2014.05.008

    Article  CAS  Google Scholar 

  2. Adlington RM, Baldwin JE, Becker GW, Chen B, Cheng L, Cooper SL, Hermann RB, Howe TJ, McCoull W, McNulty AM, Neubauer BL, Pritchard GJ (2001) Design, synthesis, and proposed active site binding analysis of monocyclic 2-azetidinone inhibitors of prostate specific antigen. J Med Chem 44(10):1491–1508. doi:10.1021/jm000145g

    Article  CAS  Google Scholar 

  3. Aizpurúa JM, Ganboa JI, Palomo C, Loinaz I, Oyarbide J, Fernández X, Balentova E, Frátila RM, Jiménez A, Miranda JI, Laso A, Avila S, Castrillo JL (2011) Cyclic RGD β-lactam peptidomimetics induce differential gene expression in human endothelial cells. ChemBioChem 12(3):401–405. doi:10.1002/cbic.201000572

    Article  CAS  Google Scholar 

  4. Alcaide B, Almendros P, Aragoncillo C (2007) β-Lactams: versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem Rev 107(11):4437–4492. doi:10.1021/cr0307300

    Article  CAS  Google Scholar 

  5. Alcaide B, Almendros P (2011) Gold-catalyzed heterocyclizations in alkynyl- and allenyl-β-lactams. Beilstein J Org Chem 7:622–630. doi:10.3762/bjoc.7.73

    Article  CAS  Google Scholar 

  6. Annis GD, Hebblethwaite EM, Hodgson ST, Hollinshead DM, Ley SV (1983) Synthesis of β-lactams from π-allyltricarbonyliron (lactone) complexes. J Chem Soc Perkin Trans 1(12):2851–2856. doi:10.1039/P19830002851

    Article  Google Scholar 

  7. Ardura D, López R (2007) A theoretical investigation of the Co(CO)4-catalyzed carbonylative ring expansion of N-benzoyl-2-methylaziridine to β-lactams: reaction mechanism and effect of substituent at the aziridine Cα atom. J Org Chem 72(9):3259–3267. doi:10.1021/jo0625249

    Article  CAS  Google Scholar 

  8. Arnott G, Clayden J, Hamilton SD (2006) Azabicyclic amino acids by stereoselective dearomatizing cyclization of the enolates of N-nicotinoyl glycine derivatives. Org Lett 8(23):5325–5328. doi:10.1021/ol062126s

    Article  CAS  Google Scholar 

  9. Arrieta A, Lecea B, Cossio FP (2010) Computational studies on the synthesis of β-Lactams via [2+2] thermal cycloadditions. Top Heterocycl Chem 22(Heterocyclic Scaffolds I):313–347. doi:10.1007/7081_2009_10

  10. Attenni B, Cerreti A, D’Annibale A, Resta S, Trogolo C (1998) Mn(III)-promoted sulfur-directed 4-exo-trig radical cyclization of enamides to β-lactams. Tetrahedron 54(39):12029–12038. doi:10.1016/S0040-4020(98)83055-X

    Article  CAS  Google Scholar 

  11. Ayitou AJ-L, Jesuraj JL, Barooah N, Ugrinov A, Sivaguru J (2009) Enantiospecific photochemical Norrish/Yang type II reaction of nonbiaryl atropchiral α-oxoamides in solution-axial to point chirality transfer. J Am Chem Soc 131(32):11314–11315. doi:10.1021/ja9050586

    Article  CAS  Google Scholar 

  12. Baeza JL, Gerona-Navarro G, Pérez de Vega MJ, García-López MT, González-Muñiz R, Martín-Martínez M (2008) Azetidine-derived amino acids versus proline derivatives. alternative trends in reverse turn induction. J Org Chem 73(5):1704–1715. doi:10.1021/jo701746w

    Article  CAS  Google Scholar 

  13. Baeza JL, Gerona-Navarro G, Thompson K, Pérez de Vega MJ, Infantes L, García-López MT, González-Muñiz R, Martín-Martínez M (2009) Further evidence for 2-Alkyl-2-carboxyazetidines as γ-turn inducers. J Org Chem 74(21):8203–8211. doi:10.1021/jo901712x

    Article  CAS  Google Scholar 

  14. Bajwa JS, Miller MJ (1983) Preparation of chiral substituted succinic acids. J Org Chem 48(7):1114–1116. doi:10.1021/jo00155a042

    Article  CAS  Google Scholar 

  15. Banik BK, Banik I, Becker FF (2010) Novel anticancer β-lactams. Top Heterocycl Chem 22(Heterocyclic Scaffolds I):349–373. doi:10.1007/7081_2010_28

  16. Bittermann H, Boeckler F, Einsiedel J, Gmeiner P (2006) A highly practical RCM approach towards a molecular building kit of spirocyclic reverse turn mimics. Chem Eur J 12(24):6315–6322. doi:10.1002/chem.200600432

    Article  CAS  Google Scholar 

  17. Bittermann H, Gmeiner P (2006) Chirospecific synthesis of spirocyclic β-lactams and their characterization as potent type II β-turn inducing peptide mimetics. J Org Chem 71(1):97–102. doi:10.1021/jo0517287

    Article  CAS  Google Scholar 

  18. Bonache MA, Cativiela C, García-López MT, González-Muñiz R (2006) β-Lactams derived from phenylalanine and homologues: effects of the distance between the aromatic rings and the α-stereogenic reactive center on the memory of chirality. Tetrahedron Lett 47(33):5883–5887. doi:10.1016/j.tetlet.2006.06.057

    Article  CAS  Google Scholar 

  19. Bonache MA, Gerona-Navarro G, García-Aparicio C, Alías M, Martín-Martínez M, García-López MT, López P, Cativiela C, González-Muñiz R (2003) Memory of chirality in the stereoselective synthesis of β-lactams: importance of the starting amino acid derivative. Tetrahedron Asymmetry 14(15):2161–2169. doi:10.1016/S0957-4166(03)00398-7

    Article  CAS  Google Scholar 

  20. Bonache MA, Gerona-Navarro G, Martín-Martínez M, García-López MT, López P, Cativiela C, González-Muñiz R (2003) Memory of chirality in the enantioselective synthesis of β-lactams derived from amino acids. Influence of the reaction conditions. Synlett 7:1007–1011. doi:10.1055/s-2003-39301

    Google Scholar 

  21. Bonache MA, López P, Martín-Martínez M, García-López MT, Cativiela C, González-Muñiz R (2006) Stereoselective synthesis of amino acid-derived β-lactams. Experimental evidence for TADDOL as a memory of chirality enhancer. Tetrahedron 62(1):130–138. doi:10.1016/j.tet.2005.09.125

    Article  CAS  Google Scholar 

  22. Bossio R, Marcos CF, Marcaccini S, Pepino R (1997) A facile synthesis of β-lactams based on the isocyanide chemistry. Tetrahedron Lett 38(14):2519–2520. doi:10.1016/S0040-4039(97)00389-4

    Article  CAS  Google Scholar 

  23. Cainelli G, Galletti P, Garbisa S, Giacomini D, Sartor L, Quintavalla A (2005) 4-Alkyliden-β-lactams conjugated to polyphenols: synthesis and inhibitory activity. Bioorg Med Chem 13(22):6120–6132. doi:10.1016/j.bmc.2005.06.041

    Article  CAS  Google Scholar 

  24. Calet S, Urso F, Alper H (1989) Enantiospecific and stereospecific rhodium(I)-catalyzed carbonylation and ring expansion of aziridines. Asymmetric synthesis of β-lactams and the kinetic resolution of aziridines. J Am Chem Soc 111(3):931–934. doi:10.1021/ja00185a023

    Article  CAS  Google Scholar 

  25. Candeias NR, Carias C, Gomes LFR, Andre V, Duarte MT, Gois PMP, Afonso CAM (2012) Asymmetric intramolecular C-H insertion of α-diazoacetamides in water by dirhodium(II) catalysts derived from natural amino acids. Adv Synth Catal 354(16):2921–2927, S2921/2921–S2921/2928. doi:10.1002/adsc.201200101

  26. Candeias NR, Gois PMP, Afonso CAM (2005) Rh(II) catalyzed intramolecular C-H insertion of diazo substrates in water: a simple and efficient approach to catalyst reuse. Chem Commun 3:391–393. doi:10.1039/B414233K

    Article  Google Scholar 

  27. Candeias NR, Gois PMP, Afonso CAM (2006) Rh(II)-catalyzed intramolecular C-H insertion of diazo substrates in water: scope and limitations. J Org Chem 71(15):5489–5497. doi:10.1021/jo060397a

    Article  CAS  Google Scholar 

  28. Candeias NR, Gois PMP, Veiros LF, Afonso CAM (2008) C-H carbene insertion of α-diazo acetamides by photolysis in non-conventional media. J Org Chem 73(15):5926–5932. doi:10.1021/jo800980c

    Article  CAS  Google Scholar 

  29. Clader JW (2005) Ezetimibe and other azetidinone cholesterol absorption inhibitors. Curr Top Med Chem 5(3):243–256. doi:10.2174/1568026053544498

    Article  CAS  Google Scholar 

  30. Cordero FM, Salvati M, Pisaneschi F, Brandi A (2004) Novel prospects of the acidic thermal rearrangement of spiro[cyclopropane-1,5′-isoxazolidines] to β-lactams. Eur J Org Chem 10:2205–2213. doi:10.1002/ejoc.200300595

    Article  CAS  Google Scholar 

  31. Corredor M, Bujons J, Orzaez M, Sancho M, Pérez-Payá E, Alfonso I, Messeguer A (2013) Optimizing the control of apoptosis by amide/triazole isosteric substitution in a constrained peptoid. Eur J Med Chem 63:892–896. doi:10.1016/j.ejmech.2013.03.004

    Article  CAS  Google Scholar 

  32. Corredor M, Garrido M, Bujons J, Orzáez M, Perez-Paya E, Alfonso I, Messeguer A (2015) Efficient synthesis of conformationally restricted apoptosis inhibitors bearing a triazole moiety. Chem Eur J 21(40):14122–14128. doi:10.1002/chem.201502380

    Article  CAS  Google Scholar 

  33. Chamchaang W, Pinhas AR (1990) The conversion of an aziridine to a β-lactam. J Org Chem 55(9):2943–2950. doi:10.1021/jo00296a070

    Article  CAS  Google Scholar 

  34. Chattopadhyay SK, Sarkar K, Thander L, Roy SP (2007) A stereodivergent route to epimeric 2-piperidinylglycines: application to the synthesis of carbocyclic β-lactam derivatives. Tetrahedron Lett 48(35):6113–6116. doi:10.1016/j.tetlet.2007.06.148

    Article  CAS  Google Scholar 

  35. Choi EB, Yon GH, Lee HK, Yang HC, Yoo CY, Pak CS (2003) Synthesis of β-lactam from acyl(arylcarbamoyl)-S, S-bis(alkylketene) dithioacetal: revised structure of the product from thermal cyclization of acyl(arylcarbamoyl)-S, S-bis(alkylketene) dithioacetal. Synthesis 18:2771–2776. doi:10.1055/s-2003-42466

    Google Scholar 

  36. Choi MK-W, Yu W-Y, Che C-M (2005) Ruthenium-catalyzed stereoselective intramolecular carbenoid C-H insertion for β- and γ-lactam formations by decomposition of α-diazoacetamides. Org Lett 7(6):1081–1084. doi:10.1021/ol050003m

    Article  CAS  Google Scholar 

  37. Chowdari NS, Suri JT, Barbas CF III (2004) Asymmetric synthesis of quaternary α- and β-amino acids and β-lactams via proline-catalyzed mannich reactions with branched aldehyde donors. Org Lett 6(15):2507–2510. doi:10.1021/ol049248+

    Article  CAS  Google Scholar 

  38. D’Annibale A, Pesce A, Resta S, Trogolo C (1997) Ceric ammonium nitrate promoted free radical cyclization reactions leading to β-lactams. Tetrahedron Lett 38(10):1829–1832. doi:10.1016/S0040-4039(97)00162-7

    Article  Google Scholar 

  39. D’Annibale A, Pesce A, Resta S, Trogolo C (1997) Manganese(III)-promoted free radical cyclizations of enamides leading to β-lactams. Tetrahedron 53(38):13129–13138. doi:10.1016/S0040-4020(97)00835-1

    Article  Google Scholar 

  40. Davoli P, Moretti I, Prati F, Alper H (1999) Carbonylation of silylated hydroxymethyl aziridines to β-lactams. J Org Chem 64(2):518–521. doi:10.1021/JO981568H

    Article  CAS  Google Scholar 

  41. De Risi C, Pollini GP, Veronese AC, Bertolasi V (2001) A new simple route for the synthesis of (±)-2-azetidinones starting from β-enaminoketoesters. Tetrahedron 57(51):10155–10161. doi:10.1016/S0040-4020(01)01036-5

    Article  Google Scholar 

  42. Dema HK, Foubelo F, Yus M (2012) Diastereoselective coupling of N-(tert-Butyl)sulfinyl imines and dimethyl malonate. synthesis of enantiomerically enriched β-amino esters and β-lactams. Helv Chim Acta 95(10):1790–1798. doi:10.1002/hlca.201200303

    Article  CAS  Google Scholar 

  43. Dohi T, Maruyama A, Minamitsuji Y, Takenaga N, Kita Y (2007) First hypervalent iodine(III)-catalyzed C–N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem Commun 12:1224–1226. doi:10.1039/B616510A

    Article  Google Scholar 

  44. Durham TB, Miller MJ (2002) Conversion of glucuronic acid glycosides to novel bicyclic β-lactams. Org Lett 4(1):135–138. doi:10.1021/ol017026v

    Article  CAS  Google Scholar 

  45. Fan L, Adams AM, Polisar JG, Ganem B (2008) Studies on the chemistry and reactivity of α-substituted ketones in isonitrile-based multicomponent reactions. J Org Chem 73(24):9720–9726. doi:10.1021/jo8019708

    Article  CAS  Google Scholar 

  46. Feroci M (2007) Synthesis of β-lactams by 4-exo-tet cyclization process induced by electrogenerated cyanomethyl anion. Part 2: stereochemical implications. Adv Synth Catal 349(13):2177–2181. doi:10.1002/adsc.200700156

  47. Feroci M, Lessard J, Orsini M, Inesi A (2005) Electrogenerated cyanomethyl anion in organic synthesis: a simple diastereoselective synthesis of cis-3-alkyl-1-benzyl-4-ethoxycarbonyl-β-lactams. Tetrahedron Lett 46(49):8517–8519. doi:10.1016/j.tetlet.2005.10.008

    Article  CAS  Google Scholar 

  48. France S, Weatherwax A, Taggi AE, Lectka T (2004) Advances in the catalytic, asymmetric synthesis of β-lactams. Acc Chem Res 37(8):592–600. doi:10.1021/ar030055g

    Article  CAS  Google Scholar 

  49. Gennari C, Schimperna G, Venturini I (1988) Titanium tetrachloride-mediated reactions of silyl ketene acetals derived from N-methylephedrine esters: asymmetric synthesis of β-lactams. Tetrahedron 44(13):4221–4232. doi:10.1016/S0040-4020(01)86668-0

    Article  CAS  Google Scholar 

  50. Gerona-Navarro G, Bonache MA, Herranz R, García-López MT, González-Muñiz R (2001) Entry to new conformationally constrained amino acids. First synthesis of 3-unsubstituted 4-Alkyl-4-carboxy-2-azetidinone derivatives via an intramolecular Nα-Cα-cyclization strategy. J Org Chem 66(10):3538–3547. doi:10.1021/jo015559b

    Article  CAS  Google Scholar 

  51. Gerona-Navarro G, Bonache MA, Herranz R, García-López MT, González-Muñiz R (2000) New conformationally constrained tryptophans by Nα-Cα-cyclization to an azetidin-2-one core. Synlett 9:1249–1252. doi:10.1055/s-2000-7123

    Google Scholar 

  52. Gerona-Navarro G, García-López MT, González-Muñiz R (2002) General approach for the stereocontrolled construction of the β-lactam ring in amino acid-derived 4-alkyl-4-carboxy-2-azetidinones. J Org Chem 67(11):3953–3956. doi:10.1021/jo025571j

    Article  CAS  Google Scholar 

  53. Gerona-Navarro G, García-López MT, González-Muñiz R (2003) Easy access to orthogonally protected α-alkyl aspartic acid and α-alkyl asparagine derivatives by controlled opening of β-lactams. Tetrahedron Lett 44(32):6145–6148. doi:10.1016/S0040-4039(03)01453-9

    Article  CAS  Google Scholar 

  54. Gerona-Navarro G, Pérez de Vega MJ, García-López MT, Andrei G, Snoeck R, Balzarini J, De Clercq E, González-Muñiz R (2004) Synthesis and anti-HCMV activity of 1-acyl-β-lactams and 1-acylazetidines derived from phenylalanine. Bioorg Med Chem Lett 14(9):2253–2256. doi:10.1016/j.bmcl.2004.02.010

    Article  CAS  Google Scholar 

  55. Gerona-Navarro G, Pérez de Vega MJ, García-López MT, Andrei G, Snoeck R, De Clercq E, Balzarini J, González-Muñiz R (2005) From 1-Acyl-β-lactam human cytomegalovirus protease inhibitors to 1-benzyloxycarbonylazetidines with improved antiviral activity. A straightforward approach to convert covalent to noncovalent inhibitors. J Med Chem 48(7):2612–2621. doi:10.1021/jm0492812

  56. Gerona-Navarro G, Royo M, García-López MT, Albericio F, González-Muñiz R (2003) Exploring solid-phase approaches for the preparation of new β-lactams from amino acids. Mol Diversity 6(2):75–84

    Article  CAS  Google Scholar 

  57. Gerstenberger BS, Lin J, Mimieux YS, Brown LE, Oliver AG, Konopelski JP (2008) Structural characterization of an enantiomerically pure amino acid imidazolide and direct formation of the β-lactam nucleus from an α-amino acid. Org Lett 10(3):369–372. doi:10.1021/ol7025922

    Article  CAS  Google Scholar 

  58. Ghabraie E, Balalaie S, Mehrparvar S, Rominger F (2014) Synthesis of functionalized β-lactams and pyrrolidine-2,5-diones through a metal-free sequential Ugi-4CR/cyclization reaction. J Org Chem 79(17):7926–7934. doi:10.1021/jo5010422

    Article  CAS  Google Scholar 

  59. Gianelli C, Sambri L, Carlone A, Bartoli G, Melchiorre P (2008) Aminocatalytic enantioselective anti-Mannich reaction of aldehydes with in situ generated N-Cbz and N-Boc imines. Angew Chem Int Ed 47(45):8700–8702. doi:10.1002/anie.200803819

    Article  CAS  Google Scholar 

  60. Gill GB, Pattenden G, Reynolds SJ (1989) Cobalt-mediated reactions. A new synthetic approach to β-, γ- and δ-lactams. Tetrahedron Lett 30(24):3229–3232. doi:10.1016/S0040-4039(00)99209-8

    Article  CAS  Google Scholar 

  61. Gois PMP, Afonso CAM (2004) Stereo- and regiocontrol in the formation of lactams by rhodium-carbenoid C-H insertion of α-diazoacetamides. Eur J Org Chem 18:3773–3788. doi:10.1002/ejoc.200400237

    Article  CAS  Google Scholar 

  62. Gomes LFR, Trindade AF, Candeias NR, Veiros LF, Gois PMP, Afonso CAM (2009) Cyclization of diazoacetamides catalyzed by N-heterocyclic carbene dirhodium(II) complexes. Synthesis 20:3519–3526. doi:10.1055/s-0029-1217005

    Google Scholar 

  63. Gomes LFR, Veiros LF, Maulide N, Afonso CAM (2015) Diazo- and transition-metal-free C-H insertion: a direct synthesis of β-lactams. Chem - Eur J 21(4):1449–1453. doi:10.1002/chem.201404990

    Article  CAS  Google Scholar 

  64. Grecian S, Desai P, Mossman C, Poutsma JL, Aube J (2007) Reactions of cyclopropanone acetals with alkyl azides: carbonyl addition versus ring-opening pathways. J Org Chem 72(25):9439–9447. doi:10.1021/jo0711034

    Article  CAS  Google Scholar 

  65. Grohmann M, Buck S, Schaeffler L, Maas G (2006) Diruthenium(I, I) catalysts for the formation of β- and γ-lactams via carbenoid C-H insertion of α-diazoacetamides. Adv Synth Catal 348(15):2203–2211. doi:10.1002/adsc.200606108

    Article  CAS  Google Scholar 

  66. Grohmann M, Maas G (2007) Ruthenium catalysts for carbenoid intramolecular C-H insertion of 2-diazoacetoacetamides and diazomalonic ester amides. Tetrahedron 63(49):12172–12178. doi:10.1016/j.tet.2007.09.053

    Article  CAS  Google Scholar 

  67. Guerrini A, Varchi G, Samori C, Daniele R, Arturo B (2007) The first synthesis of N, O-protected β2,2,3,3-isoserines bearing two adjacent quaternary stereogenic centers and their corresponding β-lactams. Tetrahedron Lett 48(29):5081–5085. doi:10.1016/j.tetlet.2007.05.087

    Article  CAS  Google Scholar 

  68. Hachiya I, Yoshitomi T, Yamaguchi Y, Shimizu M (2009) Stereodivergent synthesis of β-lactams using thermal rearrangement of aminocyclobutenones. Org Lett 11(15):3266–3268. doi:10.1021/ol901192y

    Article  CAS  Google Scholar 

  69. Hanessian S, Bedeschi A, Battistini C, Mongelli N (1985) A new synthetic strategy for the penems. Total synthesis of (5R,6S,8R)-6-(α-hydroxyethyl)-2-(hydroxymethyl)penem-3-carboxylic acid. J Am Chem Soc 107(5):1438–1439. doi:10.1021/ja00291a069

    Article  CAS  Google Scholar 

  70. Hodgson ST, Hollinshead DM, Ley SV (1984) π-Allyltricarbonyliron lactone complexes in synthesis: application to the synthesis of the β-lactam antibiotic (+)-thienamycin. J Chem Soc, Chem Commun 8:494–496. doi:10.1039/C39840000494

    Article  Google Scholar 

  71. Huang L, Zhao W, Staples RJ, Wulff WD (2013) Multifaceted interception of 2-chloro-2-oxoacetic anhydrides: a catalytic asymmetric synthesis of β-lactams. Chem Sci 4(2):622–628. doi:10.1039/C2SC21240D

    Article  CAS  Google Scholar 

  72. Ishibashi H, Kameoka C, Iriyama H, Kodama K, Sato T, Ikeda M (1995) Sulfur-directed regioselective radical cyclization leading to β-lactams: formal synthesis of (±)-PS-5 and (+)-thienamycin. J Org Chem 60(5):1276–1284. doi:10.1021/jo00110a035

    Article  CAS  Google Scholar 

  73. Ishibashi H, Kameoka C, Kodama K, Ikeda M (1996) Asymmetric radical cyclization leading to β-lactams: stereoselective synthesis of chiral key intermediates for carbapenem antibiotics PS-5 and thienamycin. Tetrahedron 52(2):489–502. doi:10.1016/0040-4020(95)00902-7

    Article  CAS  Google Scholar 

  74. Jakowiecki J, Loska R, Makosza M (2008) Synthesis of α-trifluoromethyl-β-lactams and esters of β-amino acids via 1,3-dipolar cycloaddition of nitrones to fluoroalkenes. J Org Chem 73(14):5436–5441. doi:10.1021/jo800721w

    Article  CAS  Google Scholar 

  75. Jurcik V, Slawin AMZ, O’Hagan D (2011) Single enantiomer synthesis of α-(trifluoromethyl)-β-lactam. Beilstein J Org Chem 7:759–766, No. 786. doi:10.3762/bjoc.7.86

  76. Kamimura A, Morita R, Matsuura K, Mitsudera H, Shirai M (2003) A convenient stereoselective synthesis of β-lactams from β-hydroxy-α-thioalkylesters prepared from Michael/aldol tandem reaction or stereoselective addition of thiols to the Baylis-Hillman adducts. Tetrahedron 59(50):9931–9938. doi:10.1016/j.tet.2003.10.035

    Article  CAS  Google Scholar 

  77. Kashikura W, Mori K, Akiyama T (2011) Chiral phosphoric acid catalyzed enantioselective synthesis of β-amino-α, α-difluoro carbonyl compounds. Org Lett 13(7):1860–1863. doi:10.1021/ol200374m

    Article  CAS  Google Scholar 

  78. Kawabata T, Fuji K (2003) Memory of chirality: asymmetric induction based on the dynamic chirality of enolates. Top Stereochem 23:175–205. doi:10.1002/0471224499.ch3

    Article  CAS  Google Scholar 

  79. Kawabata T, Minami T, Hiyama T (1992) Stereoselective synthesis of β-lactams by oxidative coupling of dianions of acyclic tertiary amides. J Org Chem 57(6):1864–1873. doi:10.1021/jo00032a047

    Article  CAS  Google Scholar 

  80. Kawabata T, Sumi K, Hiyama T (1989) A new synthesis of β-lactams through stereoselective oxidative coupling of the dianions of acyclic amides. J Am Chem Soc 111(17):6843–6845. doi:10.1021/ja00199a055

    Article  CAS  Google Scholar 

  81. Kong W-J, Liu Y-J, Xu H, Chen Y-Q, Dai H-X, Yu J-Q (2016) Pd-catalyzed α-selective c-h functionalization of olefins: en route to 4-imino-β-lactams. J Am Chem Soc 138(7):2146–2149. doi:10.1021/jacs.5b13353

    Article  CAS  Google Scholar 

  82. Laborde MA, Mata EG (2006) The polymer-supported and combinatorial synthesis of β-lactam compounds: an update. Mini-Rev Med Chem 6(1):109–120. doi:10.2174/138955706775197794

    Article  CAS  Google Scholar 

  83. Laurent M, Ceresiat M, Marchand-Brynaert J (2004) Regioselective Baeyer-Villiger oxidation in 4-Carbonyl-2-azetidinone series: a revisited route toward carbapenem precursor. J Org Chem 69(9):3194–3197. doi:10.1021/jo030377y

    Article  CAS  Google Scholar 

  84. Laurent M, Ceresiat M, Marchand-Brynaert J (2006) Synthesis of (1′R,3S,4S)-3-[1′-(tert-butyldimethylsilyloxy)ethyl]-4-(cyclopropylcarbonyloxy)azetidin-2-one. Eur J Org Chem 16:3755–3766. doi:10.1002/ejoc.200600235

    Article  CAS  Google Scholar 

  85. LeBeau AM, Kostova M, Craik CS, Denmeade SR (2010) Prostate-specific antigen: an overlooked candidate for the targeted treatment and selective imaging of prostate cancer. Biol Chem 391(4):333–343. doi:10.1515/bc.2010.044

    Article  CAS  Google Scholar 

  86. Liang J, Chen J, Du F, Zeng X, Li L, Zhang H (2009) Oxidative carbon–carbon bond formation in the synthesis of bioactive spiro β-lactams. Org Lett 11(13):2820–2823. doi:10.1021/ol901005x

    Article  CAS  Google Scholar 

  87. Livermore DM (2006) Can β-lactams be re-engineered to beat MRSA? Clin Microbiol Infect 12(Suppl. 2):11–16. doi:10.1111/j.1469-0691.2006.01403.x

    Article  CAS  Google Scholar 

  88. Lu X, Long TE (2011) Asymmetric synthesis of monocyclic β-lactams from L-cysteine using photochemistry. Tetrahedron Lett 52(39):5051–5054. doi:10.1016/j.tetlet.2011.07.085

    Article  CAS  Google Scholar 

  89. Macias A, Ramallal AM, Alonso E, Del Pozo C, Gonzalez J (2006) Synthesis of enantiopure pyrrolidine-derived peptidomimetics and oligo-β-peptides via nucleophilic ring-opening of β-lactams. J Org Chem 71(20):7721–7730. doi:10.1021/jo061189l

    Article  CAS  Google Scholar 

  90. Magriotis PA (2001) Recent progress in the enantioselective synthesis of β-lactams: development of the first catalytic approaches. Angew Chem Int Ed 40(23):4377–4379. doi:10.1002/1521-3773(20011203)40:23<4377:AID-ANIE4377>3.0.CO;2-J

    Article  CAS  Google Scholar 

  91. Marradi M, Brandi A, de Meijere A (2006) New oligocyclic β-lactams and β-amino acid derivatives by intramolecular cycloaddition of bicyclopropylidenyl-substituted nitrones. Synlett 7:1125–1127. doi:10.1055/s-2006-939687

    Google Scholar 

  92. Miller MJ, Bajwa JS, Mattingly PG, Peterson K (1982) Enantioselective syntheses of 3-substituted 4-(alkoxycarbonyl)-2-azetidinones from malic acid. J Org Chem 47(25):4928–4933. doi:10.1021/jo00146a020

    Article  CAS  Google Scholar 

  93. Miller MJ, Mattingly PG, Morrison MA, Kerwin JF Jr (1980) Synthesis of β-lactams from substituted hydroxamic acids. J Am Chem Soc 102(23):7026–7032. doi:10.1021/ja00543a021

    Article  CAS  Google Scholar 

  94. Moonen K, Stevens CV (2005) One-pot synthesis of N-chloroacetyl 1-aminoalkyl phosphonates-precursors of 4-phosphono-β-lactams. Synthesis 20:3603–3612. doi:10.1055/s-2005-918440

    Google Scholar 

  95. Moreira R, Santana AB, Iley J, Neres J, Douglas KT, Horton PN, Hursthouse MB (2005) Design, synthesis, and enzymatic evaluation of n1-acyloxyalkyl- and n1-oxazolidin-2,4-dion-5-yl-substituted β-lactams as novel inhibitors of human leukocyte elastase. J Med Chem 48(15):4861–4870. doi:10.1021/jm0501331

    Article  CAS  Google Scholar 

  96. Morin RB, Gorman M (eds) (1982a) Chemistry and biology of β-lactam antibiotics, vol 1: Penicillins and cephalosporins. vol Copyright (C) 2016 American Chemical Society (ACS). Academic Press

    Google Scholar 

  97. Morin RB, Gorman M (eds) (1982b) Chemistry and biology of β-lactam antibiotics, Vol. 2: nontraditional β-lactam antibiotics. vol Copyright (C) 2016 American Chemical Society (ACS). Academic Press

    Google Scholar 

  98. Morin RB, Gorman M (eds) (1982c) Chemistry and biology of β-lactam antibiotics, vol 3: The biology of β-lactam antibiotics. vol Copyright (C) 2016 American Chemical Society (ACS). Academic Press

    Google Scholar 

  99. Muroni D, Saba A (2005) Quinoline β-lactams by Rh(II)-catalyzed highly stereoselective intramolecular carbene insertion into a carbon-hydrogen bond. ARKIVOC 13:1–7. doi:10.3998/ark.5550190.0006.d01

    Google Scholar 

  100. Nagata K, Sano D, Shimizu Y, Miyazaki M, Kanemitsu T, Itoh T (2009) Catalytic asymmetric alkylation of α-cyanocarboxylates and acetoacetates using a phase-transfer catalyst. Tetrahedron Asymmetry 20(21):2530–2536. doi:10.1016/j.tetasy.2009.10.018

    Article  CAS  Google Scholar 

  101. Natarajan A, Ramamurthy V (2006) Asymmetric induction during photocyclization of chiral and achiral α-oxoamides within achiral zeolites. Org Biomol Chem 4(24):4533–4542. doi:10.1039/B611387G

    Article  CAS  Google Scholar 

  102. Natarajan A, Wang K, Ramamurthy V, Scheffer JR, Patrick B (2002) Control of enantioselectivity in the photochemical conversion of α-oxoamides into β-lactam derivatives. Org Lett 4(9):1443–1446. doi:10.1021/ol025700i

    Article  CAS  Google Scholar 

  103. Notz W, Tanaka F, Watanabe S, Chowdari NS, Turner JM, Thayumanavan R, Barbas CF (2003) The direct organocatalytic asymmetric mannich reaction: unmodified aldehydes as nucleophiles. J Org Chem 68(25):9624–9634. doi:10.1021/jo0347359

    Article  CAS  Google Scholar 

  104. Núñez-Villanueva D, Bonache MA, Infantes L, García-López MT, Martín-Martínez M, González-Muñiz R (2011) Quaternary α, α-2-oxoazepane α-amino acids: synthesis from ornithine-derived β-lactams and incorporation into model dipeptides. J Org Chem 76(16):6592–6603. doi:10.1021/jo200894d

    Article  CAS  Google Scholar 

  105. Núñez-Villanueva D, Bonache MA, Lozano L, Infantes L, Elguero J, Alkorta I, García-López MT, González-Muñiz R, Martín-Martínez M (2015) Experimental and theoretical studies on the rearrangement of 2-oxoazepane α, α-amino acids into 2’-oxopiperidine β2,3,3-amino acids: an example of intramolecular catalysis. Chem Eur J 21(6):2489–2500. doi:10.1002/chem.201405640

    Article  CAS  Google Scholar 

  106. Núñez-Villanueva D, García-López MT, Martín-Martínez M, González-Muñiz R (2015) Divergent, stereoselective access to heterocyclic α, α-quaternary- and β2,3,3-amino acid derivatives from a N-Pmp-protected Orn-derived β-lactam. Org Biomol Chem 13(18):5195–5201. doi:10.1039/C5OB00429B

    Article  CAS  Google Scholar 

  107. Núñez-Villanueva D, Infantes L, García-López MT, González-Muñiz R, Martín-Martínez M (2012) Azepane quaternary amino acids as effective inducers of 310 helix conformations. J Org Chem 77(21):9833–9839. doi:10.1021/jo301379r

    Article  CAS  Google Scholar 

  108. O’Boyle NM, Carr M, Greene LM, Keely NO, Knox AJS, McCabe T, Lloyd DG, Zisterer DM, Meegan MJ (2011) Synthesis, biochemical and molecular modelling studies of antiproliferative azetidinones causing microtubule disruption and mitotic catastrophe. Eur J Med Chem 46(9):4595–4607

    Article  CAS  Google Scholar 

  109. Palomo C, Aizpurua JM, Balentova E, Jiménez A, Oyarbide J, Fratila RM, Miranda JI (2007) Synthesis of β-lactam scaffolds for ditopic peptidomimetics. Org Lett 9(1):101–104. doi:10.1021/ol0626241

    Article  CAS  Google Scholar 

  110. Palomo C, Aizpurúa JM, Benito A, Miranda JI, Fratila RM, Matute C, Domercq M, Gago F, Martín-Santamaría S, Linden A (2003) Development of a new family of conformationally restricted peptides as potent nucleators of β-turns. design, synthesis, structure, and biological evaluation of a β-lactam peptide analogue of melanostatin. J Am Chem Soc 125(52):16243–16260. doi:10.1021/ja038180a

    Article  CAS  Google Scholar 

  111. Palomo C, Oiarbide M (2010) β-Lactam ring opening: a useful entry to amino acids and relevant nitrogen-containing compounds. Top Heterocycl Chem 22 (Heterocyclic Scaffolds I):211–259. doi:10.1007/7081_2009_11

  112. Pattenden G, Reynolds SJ (1991) A new synthetic route to (±)-thienamycin via 4-exo trigonal cyclization of carbamoyl cobalt intermediates. Tetrahedron Lett 32(2):259–262. doi:10.1016/0040-4039(91)80870-C

    Article  CAS  Google Scholar 

  113. Pérez-Faginas P, Alkorta I, García-López MT, González-Muñiz R (2008) From theoretical calculations to the enantioselective synthesis of a 1,3,4-trisubstituted Gly-derived 2-azetidinone. Tetrahedron Lett 49(2):215–218. doi:10.1016/j.tetlet.2007.11.099

    Article  CAS  Google Scholar 

  114. Pérez-Faginas P, Aranda MT, Coady L, García-López MT, González-Muñiz R (2008b) Simple, highly enantioselective access to quaternary 1,3,4,4-tetrasubstituted β-lactams from amino acids: a solid-phase approach. Adv Synth Catal 350(14+15):2279–2285. doi:10.1002/adsc.200800432

  115. Pérez-Faginas P, Aranda MT, García-López MT, Francesch A, Cuevas C, González-Muñiz R (2011) Optically active 1,3,4,4-tetrasubstituted β-lactams: synthesis and evaluation as tumor cell growth inhibitors. Eur J Med Chem 46(10):5108–5119. doi:10.1016/j.ejmech.2011.08.025

    Article  CAS  Google Scholar 

  116. Pérez-Faginas P, O’Reilly F, O’Byrne A, García-Aparicio C, Martín-Martínez M, Pérez de Vega MJ, García-López MT, González-Muñiz R (2007) Exceptional stereoselectivity in the synthesis of 1,3,4-trisubstituted 4-carboxy β-lactam derivatives from amino acids. Org Lett 9(8):1593–1596. doi:10.1021/ol070533d

    Article  CAS  Google Scholar 

  117. Piotti ME, Alper H (1996) Inversion of stereochemistry in the Co2(CO)8-catalyzed carbonylation of aziridines to β-lactams. The first synthesis of highly strained trans-bicyclic β-lactams. J Am Chem Soc 118(1):111–116. doi:10.1021/JA9531586

    Article  CAS  Google Scholar 

  118. Plantan I, Stephan M, Urleb U, Mohar B (2009) Stereoselective synthesis of (1′S,3R,4R)-4-acetoxy-3-(2′-fluoro-1′-trimethylsilyloxyethyl)-2-azetidinone. Tetrahedron Lett 50(22):2676–2677. doi:10.1016/j.tetlet.2009.03.111

    Article  CAS  Google Scholar 

  119. Poole K (2004) Resistance to β-lactam antibiotics. Cell Mol Life Sci 61(17):2200–2223. doi:10.1007/s00018-004-4060-9

    Article  CAS  Google Scholar 

  120. Punda P, Makowiec S (2013) Simple and novel synthesis of 3-(thio)phosphoryl-β-lactams by radical cyclization. New J Chem 37(8):2254–2256. doi:10.1039/c3nj00192j

    Article  CAS  Google Scholar 

  121. Qian X, Zheng B, Burke B, Saindane MT, Kronenthal DR (2002) A stereoselective synthesis of BMS-262084, an azetidinone-based tryptase inhibitor. J Org Chem 67(11):3595–3600. doi:10.1021/jo010757o

    Article  CAS  Google Scholar 

  122. Rimoldi I, Cesarotti E, Zerla D, Molinari F, Albanese D, Castellano C, Gandolfi R (2011) 3-(Hydroxy(phenyl)methyl)azetidin-2-ones obtained via catalytic asymmetric hydrogenation or by biotransformation. Tetrahedron Asymmetry 22(5):597–602. doi:10.1016/j.tetasy.2011.03.007

    Article  CAS  Google Scholar 

  123. Sakamoto M, Kawanishi H, Mino T, Fujita T (2008) Asymmetric synthesis of β-lactams using chiral-memory effect on photochemical γ-hydrogen abstraction by thiocarbonyl group. Chem Commun 18:2132–2133. doi:10.1039/b801524d

    Article  CAS  Google Scholar 

  124. Sakamoto M, Takahashi M, Mino T, Fujita T (2001) Absolute asymmetric β-lactam synthesis via the solid-state photoreaction of acyclic monothioimides and the reaction trajectory in the chiral crystalline environment. Tetrahedron 57(31):6713–6719. doi:10.1016/S0040-4020(01)00619-6

    Article  CAS  Google Scholar 

  125. Salituro GM, Townsend CA (1990) Total syntheses of (−)-nocardicins A-G: a biogenetic approach. J Am Chem Soc 112(2):760–770. doi:10.1021/ja00158a040

    Article  CAS  Google Scholar 

  126. Salzmann TN, Ratcliffe RW, Christensen BG, Bouffard FA (1980) A stereocontrolled synthesis of (+)-thienamycin. J Am Chem Soc 102(19):6161–6163. doi:10.1021/ja00539a040

    Article  CAS  Google Scholar 

  127. Santa Z, Nagy J, Nyitrai J (2006) Synthesis of thienamycin-like 2-iso-oxacephems with optional stereochemistry. Tetrahedron Asymmetry 17(22):3111–3127. doi:10.1016/j.tetasy.2006.11.034

    Article  CAS  Google Scholar 

  128. Scanlan EM, Slawin AMZ, Walton JC (2004) Preparation of β- and γ-lactams from carbamoyl radicals derived from oxime oxalate amides. Org Biomol Chem 2(5):716–724. doi:10.1039/B315223E

    Article  CAS  Google Scholar 

  129. Singh GS (2003) Recent progress in the synthesis and chemistry of azetidinones. Tetrahedron 59(39):7631–7649. doi:10.1016/S0040-4020(03)01099-8

    Article  CAS  Google Scholar 

  130. Singh GS (2004) β-lactams in the new millennium. Part-I: monobactams and carbapenems. Mini-Rev Med Chem 4(1):69–92. doi:10.2174/1389557043487501

    Article  CAS  Google Scholar 

  131. Singh GS (2004) β-lactams in the new millennium. Part-II: cephems, oxacephems, penams and sulbactam. Mini-Rev Med Chem 4(1):93–109. doi:10.2174/1389557043487547

    Article  CAS  Google Scholar 

  132. Singh GS, D’Hooghe M, De Kimpe N (2011) Synthesis and reactivity of spiro-fused β-lactams. Tetrahedron 67(11):1989–2012. doi:10.1016/j.tet.2011.01.013

    Article  CAS  Google Scholar 

  133. Singh P, Raj R, Kumar V, Mahajan MP, Bedi PMS, Kaur T, Saxena AK (2012) 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur J Med Chem 47:594–600. doi:10.1016/j.ejmech.2011.10.033

    Article  CAS  Google Scholar 

  134. Sotgiu G, Chiarotto I, Feroci M, Orsini M, Rossi L, Inesi A (2008) An electrochemical alternative strategy to the synthesis of β-lactams. Electrochim Acta 53(27):7852–7858. doi:10.1016/j.electacta.2008.05.054

    Article  CAS  Google Scholar 

  135. Sperka T, Pitlik J, Bagossi P, Toezser J (2005) Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorg Med Chem Lett 15(12):3086–3090. doi:10.1016/j.bmcl.2005.04.020

    Article  CAS  Google Scholar 

  136. Sun W-W, Cao P, Mei R-Q, Li Y, Ma Y-L, Wu B (2014) Palladium-catalyzed unactivated C(sp3)-H bond activation and intramolecular amination of carboxamides: a new approach to β-lactams. Org Lett 16(2):480–483. doi:10.1021/ol403364k

    Article  CAS  Google Scholar 

  137. Sutton JC, Bolton SA, Hartl KS, Huang M-H, Jacobs G, Meng W, Ogletree ML, Pi Z, Schumacher WA, Seiler SM, Slusarchyk WA, Treuner U, Zahler R, Zhao G, Bisacchi GS (2002) Synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors. Bioorg Med Chem Lett 12(21):3229–3233. doi:10.1016/S0960-894X(02)00688-1

    Article  CAS  Google Scholar 

  138. Tanner D, Somfai P (1993) Palladium-catalyzed transformation of a chiral vinylaziridine to a β-lactam. An enantioselective route to the carbapenem (+)-PS-5. Bioorg Med Chem Lett 3(11):2415–2418. doi:10.1016/S0960-894X(01)80967-7

    Article  CAS  Google Scholar 

  139. Teng M, Gasparski CM, Williams MA, Miller MJ (1993) A combined electrophilic diazo and nucleophilic azide transfer reaction for the efficient conversion of an N-hydroxy-β-lactam to a carbacephem precursor. Bioorg Med Chem Lett 3(11):2431–2436. doi:10.1016/S0960-894X(01)80971-9

    Article  CAS  Google Scholar 

  140. Townsend CA, Salituro GM, Nguyen LT, DiNovi MJ (1986) Biogenetically-modelled total syntheses of (−)-nocardicin A and (−)-nocardicin G. Tetrahedron Lett 27(33):3819–3822. doi:10.1016/S0040-4039(00)83888-5

    Article  CAS  Google Scholar 

  141. van Berkom LWA, Kuster GJT, de Gelder R, Scheeren HW (2004) Synthesis and rearrangement of N-organyloxy β-lactams derived from a (4+2)/(3+2) sequential cycloaddition reaction involving enol ethers and nitro alkenes. Eur J Org Chem 21:4397–4404. doi:10.1002/ejoc.200400371

    Google Scholar 

  142. Van Speybroeck V, Moonen K, Hemelsoet K, Stevens CV, Waroquier M (2006) Unexpected four-membered over six-membered ring formation during the synthesis of azaheterocyclic phosphonates: experimental and theoretical evaluation. J Am Chem Soc 128(26):8468–8478. doi:10.1021/ja0584119

    Article  CAS  Google Scholar 

  143. Vaske YSM, Mahoney ME, Konopelski JP, Rogow DL, McDonald WJ (2010) Enantiomerically pure trans-β-lactams from α-amino acids via compact fluorescent light (CFL) continuous-flow photolysis. J Am Chem Soc 132(32):11379–11385. doi:10.1021/ja1050023

    Article  CAS  Google Scholar 

  144. Vassiliou S, Dimitropoulos C, Magriotis PA (2003) Novel applications of the Schoellkopf chiral auxiliary: A new and efficient enantioselective synthesis of β-lactams possessing a C-4 quaternary stereocenter. Synlett 15:2398–2400. doi:10.1055/s-2003-42103

    Google Scholar 

  145. Veinberg G, Vorona M, Shestakova I, Kanepe I, Lukevics E (2003) Design of β-lactams with mechanism based nonantibacterial activities. Curr Med Chem 10(17):1741–1757. doi:10.2174/0929867033457089

    Article  CAS  Google Scholar 

  146. Vicario JL, Badía D, Carrillo L (2001) Stereocontrolled Mannich reaction with enolizable imines using (S,S)-(+)-pseudoephedrine as chiral auxiliary. Asymmetric synthesis of α, β-disubstituted β-aminoesters and β-lactams. J Org Chem 66(26):9030–9032. doi:10.1021/jo010697m

    Article  CAS  Google Scholar 

  147. Wang Z, Ni J, Kuninobu Y, Kanai M (2014) Copper-catalyzed intramolecular C(sp3)-H and C(sp2)-H amidation by oxidative cyclization. Angew Chem Int Ed 53(13):3496–3499. doi:10.1002/anie.201311105

    Article  CAS  Google Scholar 

  148. Wee AGH, Duncan SC (2005) The bis(trimethylsilyl)methyl group as an effective N-protecting group and site-selective control element in rhodium(II)-catalyzed reaction of diazoamides. J Org Chem 70(21):8372–8380. doi:10.1021/jo051042e

    Article  CAS  Google Scholar 

  149. Wu X, Zhao Y, Ge H (2014) Nickel-catalyzed site-selective amidation of unactivated C(sp3)-H bonds. Chem Eur J 20(31):9530–9533. doi:10.1002/chem.201403356

    Article  CAS  Google Scholar 

  150. Xu Z-X, Tan Y-X, Fu H-R, Liu J, Zhang J (2014) Homochiral metal-organic frameworks with enantiopure proline units for the catalytic synthesis of β-lactams. Inorg Chem 53(22):12199–12204. doi:10.1021/ic501849g

    Article  CAS  Google Scholar 

  151. Xu Z, Huang K, Liu T, Xie M, Zhang H (2011) Synthesis of spirocyclic β-keto-lactams: copper catalyzed process. Chem Commun 47(17):4923–4925. doi:10.1039/c1cc10916b

    Article  CAS  Google Scholar 

  152. Yoakim C, Ogilvie WW, Cameron DR, Chabot C, Guse I, Hache B, Naud J, O’Meara JA, Plante R, Deziel R (1998) β-lactam derivatives as inhibitors of human cytomegalovirus protease. J Med Chem 41(15):2882–2891. doi:10.1021/JM980131Z

    Article  CAS  Google Scholar 

  153. Yoshimura T, Takuwa M, Tomohara K, Uyama M, Hayashi K, Yang P, Hyakutake R, Sasamori T, Tokitoh N, Kawabata T (2012) Protonation-assisted conjugate addition of axially chiral enolates: asymmetric synthesis of multisubstituted β-lactams from α-amino acids. Chem Eur J 18(48):15330–15336, S15330/15331–S15330/15104. doi:10.1002/chem.201201339

  154. Zakrzewska ME, Cal PMSD, Candeias NR, Bogel-Lukasik R, Afonso CAM, Ponte MN, Gois PMP (2012) Intramolecular C–H insertion catalyzed by dirhodium(II) complexes using CO2 as the reaction media. Green Chem Lett Rev 5(2):211–240. doi:10.1080/17518253.2011.620009

    Article  CAS  Google Scholar 

  155. Zhang B, Wee AGH (2010) Di- and trisubstituted γ-lactams via Rh(II)-carbenoid reaction of N-Cα-branched, N-bis(trimethylsilyl)methyl α-diazoamides. Synthesis of (±)-α-allokainic acid. Org Lett 12(23):5386–5389. doi:10.1021/ol1021564

    Article  CAS  Google Scholar 

  156. Zhang B, Wee AGH (2012) Conformational, steric and electronic effects on the site- and chemoselectivity of the metal-catalyzed reaction of N-bis(trimethylsilyl)methyl, N-(2-indolyl)methyl α-diazoamides. Org Biomol Chem 10(23):4597–4608. doi:10.1039/c2ob25103e

    Article  CAS  Google Scholar 

  157. Zhao H, Hsu DC, Carlier PR (2005) Memory of chirality. An emerging strategy for asymmetric synthesis. Synthesis 1:1–16. doi:10.1055/s-2004-834931

    Google Scholar 

  158. Zhong J, Groutas WC (2004) Recent developments in the design of mechanism-based and alternate substrate inhibitors of serine proteases. Curr Top Med Chem (Sharjah, United Arab Emirates) 4(12):1203–1216. doi:10.2174/1568026043387971

  159. Zhu L, Xiong Y, Li C (2015) Synthesis of α-methylene-β-lactams via PPh3-catalyzed umpolung cyclization of propiolamides. J Org Chem 80(1):628–633. doi:10.1021/jo502265a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the financial support from Ministry of Economy and Competitiveness, MINECO (BFU 2012-39092-C02-02 and SAF2015-66275-C2-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario González-Muñiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martín-Torres, I., González-Muñiz, R. (2017). β-Lactams Through Single Bond Ring Closing: Methods, Transformations and Bioactivity. In: Banik, B. (eds) Beta-Lactams. Springer, Cham. https://doi.org/10.1007/978-3-319-55621-5_7

Download citation

Publish with us

Policies and ethics