Skip to main content

Error Control Coding

  • Chapter
  • First Online:
  • 148k Accesses

Abstract

Channel coding and interleaving techniques have long been used for combating noise, interference, jamming, fading, and other channel impairments. The basic idea of channel coding is to introduce controlled redundancy into the transmitted signals that is subsequently exploited at the receiver for error correction. There are many different types of error correcting codes, but historically they have been classified into block codes and convolutional/trellis codes. This chapter first starts with an introduction to block codes and space-time block codes. This is followed by a introduction to convolutional codes, and decoding algorithms for convolutional codes, including the Viterbi algorithm and BCJR algorithm. The chapter then introduces trellis-coded modulation, followed the performance analysis of convolutional and trellis codes on additive white Gaussian noise (AWGN) channels. Block and convolutional interleavers are discussed that are useful for coding on fading channels. This is followed by a consideration of the design and performance analysis of trellis codes on interleaved flat fading channels. Afterwards, the performance of space-time codes and the decoding of space-time codes is considered. Finally, the chapter wraps up with a treatment of parallel and serial turbo codes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here, complex low-pass vector notation is used.

  2. 2.

    The received symbol energy-to-noise ratio is γ s  = R c γ b .

  3. 3.

    The parallel concatenation of more than two component codes is possible, but only two component codes are considered for simplicity.

  4. 4.

    It is important to realize that A d is not equal to a d (in our earlier discussion of convolutional codes), since the turbo codewords can consist of multiple error events.

  5. 5.

    The case of large k is not of interest because the probability of many bad mappings is extremely small and, therefore, does not contribute significantly to the mean of the distribution.

References

  1. S.M. Alamouti, A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16, 1451–1458 (1998)

    Article  Google Scholar 

  2. L. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory 20, 284–287 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Battail, A conceptual framework for understanding Turbo codes. IEEE J. Sel. Areas Commun. 16, 245–254 (1998)

    Article  Google Scholar 

  4. S. Benedetto, G. Montorsi, Design of parallel concatenated convolutional codes. IEEE Trans. Commun. 44, 591–600 (1996)

    Article  MATH  Google Scholar 

  5. S. Benedetto, G. Montorsi, Unveiling turbo codes: some results on parallel concatenated coding schemes. IEEE Trans. Inf. Theory 42, 409–428 (1996)

    Article  MATH  Google Scholar 

  6. S. Benedetto, G. Montorsi, D. Divsalar, F. Pollara, Serial concatenation of interleaved codes: performance analysis, design and iterative decoding. JPL-TDA Progress Report 42–126, (1996), pp. 42–126

    Google Scholar 

  7. S. Benedetto, G. Montorsi, D. Divsalar, F. Pollara, Soft-output decoding algorithms in iterative decoding of turbo codes. JPL-TDA Progress Report 42–124 (1996), pp. 63–84

    Google Scholar 

  8. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and decoding, in IEEE International Conference on Communications, Geneva, Switzerland, June 1993, pp. 1064–1070

    Google Scholar 

  9. E. Biglieri, D. Divsalar, P. McLane, M. Simon, Introduction to Trellis-Coded Modulation with Applications (McMillan, New York, 1991)

    MATH  Google Scholar 

  10. A.R. Calderbank, J. Mazo, A new description of trellis codes. IEEE Trans. Inf. Theory 30, 784–791 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.R. Calderbank, N.J. Sloane, New trellis codes based on lattices and cosets. IEEE Trans. Inf. Theory 33, 177–195 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Cavers, P. Ho, Analysis of the error performance of trellis-coded modulation in Rayleigh-fading channels. IEEE Trans. Commun. 40, 74–83 (1992)

    Article  MATH  Google Scholar 

  13. P. Chevillat, E. Eleftheriou, Decoding of trellis-encoded signal in the presence of intersymbol interference and noise. IEEE Trans. Commun. 37, 669–676 (1989)

    Article  Google Scholar 

  14. G.C. Clark, Jr., J.B. Cain, Error-Correction Coding for Digital Communications (Plenum, New York, 1981)

    Book  MATH  Google Scholar 

  15. D.J. Costello, Construction of convolutional codes for sequential decoding. Technical Report EE-692, University of Notre Dame (1969)

    Google Scholar 

  16. D.J. Costello, G. Meyerhans, Concatenated turbo codes, in IEEE Information Theory Symposium, October 1996, pp. 571–574

    Google Scholar 

  17. D. Divsalar, M. Simon, Trellis coded modulation for 4800–9600 bit/s transmission over a fading mobile satellite channel. IEEE J. Sel. Areas Commun. 5, 162–174 (1987)

    Article  Google Scholar 

  18. D. Divsalar, M. Simon, The design of trellis coded MPSK for fading channels: performance criteria. IEEE Trans. Commun. 36, 1004–1012 (1988)

    Article  Google Scholar 

  19. D. Divsalar, M. Simon, The design of trellis coded MPSK for fading channels: set partitioning for optimum code design. IEEE Trans. Commun. 36, 1013–1022 (1988)

    Article  Google Scholar 

  20. S. Dolinar, D. Divsalar, Weight distributions for turbo codes using random and nonrandom permutations. JPL-TDA Progress Report, 42–121 (1995)

    Google Scholar 

  21. J. Driscoll, N. Karia, Detection process for V32 modems using trellis coding. Proc. IEEE 135, 143–154 (1988)

    Google Scholar 

  22. F. Edbauer, Performance of interleaved trellis-coded differential 8-PSK modulation over fading channels. IEEE J. Sel. Areas Commun. 7, 1340–1346 (1989)

    Article  Google Scholar 

  23. V.M. Eyuboǧlu, Detection of coded modulation signals on linear, severely distorted channels using decision-feedback noise prediction with interleaving. IEEE Trans. Commun. 36, 401–409 (1988)

    Article  Google Scholar 

  24. G.D. Forney, Jr., Convolutional codes I: algebraic structure. IEEE Trans. Inf. Theory 16, 720–738 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. G.D. Forney, Jr., Burst-correcting codes for the classic bursty channel. IEEE Trans. Commun. Technol. 19, 772–781 (1971)

    Article  Google Scholar 

  26. G.D. Forney, Jr., Maximum likelihood sequence estimation of digital sequence in the presence of intersymbol interference. IEEE Trans. Inform. Theory 18, 363–378 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. G.D. Forney, Jr., Coset codes – part I: introduction to geometrical classification. IEEE Trans. Inf. Theory 34, 1123–1151 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Hagenauer, E. Offer, L. Papke, Iterative decoding of binary block and convolutional codes. IEEE Trans. Inf. Theory 42, 429–445 (1996)

    Article  MATH  Google Scholar 

  29. S. Lin, D.J. Costello, Jr., Error Control Coding: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, 1983)

    MATH  Google Scholar 

  30. S.J. Mason, Feedback theory: further properties of signal flow graphs. Proc. IRE 44, 920–926 (1956)

    Article  Google Scholar 

  31. J.L. Massey, Coding and modulation in digital communications, in International Zurich Seminar on Digital Communications, Zurich, Switzerland (1974), pp. E2(1)–E2(4)

    Google Scholar 

  32. J.G. Proakis, M. Salehi, Digital Communications, 5th edn. (McGraw-Hill, New York, 2007)

    Google Scholar 

  33. J.L. Ramsey, Realization of optimum interleavers. IEEE Trans. Inf. Theory 16, 338–345 (1970)

    Article  MATH  Google Scholar 

  34. W.H. Sheen, G.L. Stüber, MLSE equalization and decoding for multipath-fading channels. IEEE Trans. Commun. 39, 1455–1464 (1991)

    Article  MATH  Google Scholar 

  35. J. Tan, G. Stüber, Analysis and design of interleaver mappings for iteratively decoded BICM. IEEE Trans. Wirel. Commun. 4, 662–672 (2005)

    Article  Google Scholar 

  36. V. Tarokh, N. Seshadri, A.R. Calderbank, Space–time codes for high data rate wireless communication: performance analysis and code construction. IEEE Trans. Inf. Theory 44, 744–765 (1998)

    Article  MATH  Google Scholar 

  37. V. Tarokh, H. Jafarkhani, A.R. Calderbank, Space-time block codes from orthogonal designs. IEEE Trans. Inf. Theory 45, 1456–1467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Tarokh, H. Jafarkhani, A.R. Calderbank, Space-time block coding for wireless: performance results. IEEE J. Sel. Areas Commun. 17, 451–460 (1999)

    Article  MATH  Google Scholar 

  39. H. Thaper, Real-time application of trellis coding to high-speed voiceband data transmission. IEEE J. Sel. Areas Commun. 2, 648–658 (1984)

    Article  Google Scholar 

  40. G. Ungerboeck, Channel coding with multilevel phase signals. IEEE Trans. Inf. Theory 28, 55–67 (1982)

    Article  MATH  Google Scholar 

  41. G. Ungerboeck, Trellis coded modulation with redundant signal sets – part I: introduction. IEEE Commun. Mag. 25, 5–11 (1987)

    Article  Google Scholar 

  42. A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)

    Article  MATH  Google Scholar 

  43. A.J. Viterbi, Convolutional codes and their performance in communication systems. IEEE Trans. Commun. 19, 751–772 (1971)

    Article  MathSciNet  Google Scholar 

  44. L.F. Wei, Trellis-coded modulation with multidimensional constellations. IEEE Trans. Inf. Theory 33, 483–501 (1987)

    Article  MathSciNet  Google Scholar 

  45. L.F. Wei, Coded M-DPSK with built-in time diversity for fading channels. IEEE Trans. Inf. Theory 39, 1820–1839 (1993)

    Article  MATH  Google Scholar 

  46. L. Wong, P. McLane, Performance of trellis codes for a class of equalized ISI channels. IEEE Trans. Commun. 36, 1330–1336 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stüber, G.L. (2017). Error Control Coding. In: Principles of Mobile Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-55615-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55615-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55614-7

  • Online ISBN: 978-3-319-55615-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics