Skip to main content

Particle Swarm Optimization Based Sliding Mode Control Design: Application to a Quadrotor Vehicle

  • Chapter
  • First Online:
Applications of Sliding Mode Control in Science and Engineering

Abstract

In this chapter, a design method for determining the optimal sliding mode controller parameters for a quadrotor dynamic model using the Particle Swarm Optimization algorithm is presented. In particular, due to the effort to determine optimal or near optimal sliding mode parameters, which depend on the nature of the considered dynamic model, a population based solution is proposed to tune the parameters. The proposed population based-method tunes the controller parameters (boundary layers and gains) according to a fitness function that measures the controller performances. A comparison of the designed sliding mode control with two popular controllers (PID and Backstepping) applied to a quadrotor dynamic model is proposed. In particular sliding mode control shows better performances in terms of steady state and transient response, as confirmed by performance indexes IAE, ISE, ITAE and ITSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of clarity, we note that \(h'\) is time dependent due to \(\ddot{x}_{1d}\), so it is actually \(h'(\varvec{x},t)\). Therefore in the following steps, we assert relations \(\forall \> t\).

  2. 2.

    The remaining two couples of equations are used in the outer loop, which permits to calculate the reference angles required to track a desired position.

References

  1. Ang KH, Chong G, Li Y (2005) Pid control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576

    Article  Google Scholar 

  2. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, vol 581. Springer, Berlin, Germany

    Google Scholar 

  3. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control, vol 575. Springer, Berlin, Germany

    Google Scholar 

  4. Azar AT, Vaidyanathan S (2016) Advances in chaos theory and intelligent control, vol 337. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  5. Boiko I, Fridman L, Pisano A, Usai E (2007) Analysis of chattering in systems with second-order sliding modes. IEEE Trans Autom Control 52(11):2085–2102

    Article  MathSciNet  Google Scholar 

  6. Bondarev AG, Bondarev SA, Kostyleva NE, Utkin VI (1985) Sliding modes in systems with asymptotic state observers. Autom Remote Control 46:679–684

    MATH  Google Scholar 

  7. Bouabdallah S, Siegwart R (2005) Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 2247–2252

    Google Scholar 

  8. Cavanini L, Ciabattoni L, Ferracuti F, Ippoliti G, Longhi S (2016) Microgrid sizing via profit maximization: a population based optimization approach. In: 2016 IEEE 14th international conference on industrial informatics (INDIN)

    Google Scholar 

  9. Ciabattoni L, Ferracuti F, Ippoliti G, Longhi S (2016) Artificial bee colonies based optimal sizing of microgrid components: a profit maximization approach. In 2016 IEEE congress on evolutionary computation (IEEE CEC 2016)

    Google Scholar 

  10. Corradini M, Longhi S, Monteri A, Orlando G (2010) Observer-based fault tolerant sliding mode control for remotely operated vehicles. In: IFAC proceedings volumes (IFAC-PapersOnline), pp 173–178

    Google Scholar 

  11. Corradini ML, Longhi S, Monteriù A, Orlando G (2010) Observer-based fault tolerant sliding mode control for remotely operated vehicles. IFAC Proc Vol 43(20):173–178

    Google Scholar 

  12. Corradini ML, Monteri A, Orlando G, Pettinari S (2011) An actuator failure tolerant robust control approach for an underwater remotely operated vehicle. In: 2011 50th IEEE conference on decision and control and European control conference, pp 3934–3939

    Google Scholar 

  13. Corradini ML, Monteriu A, Orlando G (2011) An actuator failure tolerant control scheme for an underwater remotely operated vehicle. IEEE Trans Control Syst Technol 19(5):1036–1046

    Google Scholar 

  14. Derafa L, Fridman L, Benallegue A, Ouldali A (2010). Super twisting control algorithm for the four rotors helicopter attitude tracking problem. In: 2010 11th international workshop on variable structure systems (VSS), pp 62–67

    Google Scholar 

  15. Erbatur K, Kaynak O (2001) Use of adaptive fuzzy systems in parameter tuning of sliding-mode controllers. IEEE/ASME Trans Mechatron 6(4):474–482

    Article  Google Scholar 

  16. Fasano A, Ferracuti F, Freddi A, Longhi S, Monteri A (2015) A virtual thruster-based failure tolerant control scheme for underwater vehicles. IFAC-PapersOnLine 48(16):146–151

    Article  Google Scholar 

  17. Ferrara A, Incremona GP, Stocchetti V (2014) Networked sliding mode control with chattering alleviation. In: 53rd IEEE conference on decision and control, pp 5542–5547

    Google Scholar 

  18. Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. Wiley

    Google Scholar 

  19. Freddi A (2012) Model-based diagnosis and control of unmanned aerial vehicles: application to the quadrotor system. PhD thesis, Università Politecnica delle Marche

    Google Scholar 

  20. Freddi A, Longhi S, Monteriù A (2009) A model-based fault diagnosis system for unmanned aerial vehicles. In: IFAC proceedings volumes (IFAC-PapersOnline), pp 71–76

    Google Scholar 

  21. Gaing Z-L (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384–391

    Article  Google Scholar 

  22. Ha QP (1996) Robust sliding mode controller with fuzzy tuning. Electron Lett 32(17):1626–1628

    Article  Google Scholar 

  23. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  24. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International conference on neural networks, 1995, vol 4, pp 1942–1948

    Google Scholar 

  25. Khalil HK, Grizzle J (1996) Nonlinear systems. Prentice Hall, New Jersey

    Google Scholar 

  26. Krstic M, Kokotovic PV, Kanellakopoulos I (1995) Nonlinear and adaptive control design. Wiley, New York, NY, USA

    MATH  Google Scholar 

  27. Lanzon A, Freddi A, Longhi S (2014) Flight control of a quadrotor vehicle subsequent to a rotor failure. J Guidance Control Dyn 37(2):580–591

    Article  Google Scholar 

  28. Lee D, Kim HJ, Sastry S (2009) Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int J Control Autom Syst 7(3):419–428

    Article  Google Scholar 

  29. Levant A (2010) Chattering analysis. IEEE Trans Autom Control 55(6):1380–1389

    Article  MathSciNet  Google Scholar 

  30. Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot Autom Mag 19(3):20–32

    Article  Google Scholar 

  31. Mercado D, Castillo P, Castro R, Lozano R (2014) 2-sliding mode trajectory tracking control and ekf estimation for quadrotors. IFAC Proc Vol 47(3):8849–8854

    Article  Google Scholar 

  32. Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of n-scroll chaotic chua circuits using adaptive backstepping control design with recursive feedback. Malays J Math Sci 7(2):219–246

    MathSciNet  Google Scholar 

  33. Vaidyanathan S (2014) Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. Int J Modell Ident Control 22(2):170–177

    Article  MathSciNet  Google Scholar 

  34. Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(5):964–973

    Google Scholar 

  35. Vaidyanathan S (2015) Analysis, control, and synchronization of a 3-d novel jerk chaotic system with two quadratic nonlinearities. Kyungpook Math J 55(3):563–586

    Google Scholar 

  36. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J ChemTech Res 8(7):209–221

    Google Scholar 

  37. Vaidyanathan S (2015) Global chaos synchronization of rucklidge chaotic systems for double convection via sliding mode control. Int J ChemTech Res 8(8):61–72

    Google Scholar 

  38. Vaidyanathan S (2015) Integral sliding mode control design for the global chaos synchronization of identical novel chemical chaotic reactor systems. Int J ChemTech Res 8(11):684–699

    Google Scholar 

  39. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its output regulation via integral sliding mode control. Int J ChemTech Res 8(11):669–683

    Google Scholar 

  40. Vaidyanathan S (2015) Sliding controller design for the global chaos synchronization of enzymes-substrates systems. Int J PharmTech Res 8(7):89–99

    Google Scholar 

  41. Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of n-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arab J Sci Eng 39(4):3351–3364

    Article  Google Scholar 

  42. Vaidyanathan S, Volos C (2016) Advances and applications in chaotic systems, vol 636. Springer, Berlin, Germany

    Google Scholar 

  43. Vaidyanathan S, Volos C (2016) Advances and applications in nonlinear control systems, vol 635. Springer, Berlin, Germany

    Google Scholar 

  44. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-d novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

    MathSciNet  MATH  Google Scholar 

  45. Wai RJ (2007) Fuzzy sliding-mode control using adaptive tuning technique. IEEE Trans Ind Electron 54(1):586–594

    Article  Google Scholar 

  46. Zheng E-H, Xiong J-J, Luo J-L (2014) Second order sliding mode control for a quadrotor UAV. ISA Trans 53(4):1350–1356. Disturbance estimation and mitigation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Ciabattoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baldini, A. et al. (2017). Particle Swarm Optimization Based Sliding Mode Control Design: Application to a Quadrotor Vehicle. In: Vaidyanathan, S., Lien, CH. (eds) Applications of Sliding Mode Control in Science and Engineering. Studies in Computational Intelligence, vol 709. Springer, Cham. https://doi.org/10.1007/978-3-319-55598-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55598-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55597-3

  • Online ISBN: 978-3-319-55598-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics