Abstract
In this work we present an efficient implementation of the Hybrid Encryption scheme based on the Niederreiter PCKS proposed by E. Persichetti.
To achieve IND-CCA2 security (in the random oracle model), we use an HMAC function of the message and the symmetric key, and then apply AES128-CBC as the data encapsulation part of this hybrid scheme. The HMAC function is based on SHA3-512. In addition, we introduce a modification in the decapsulation algorithm, to resist a reaction attack first proposed by Bernstein et al.
The implementation is done in C on Intel core i3 CPU and 4 GB RAM and 64 bit OS. The code is running Debian/Linux 3.5.2, where the source has been compiled with gcc 4.7.
Keywords
- KEM-DEM
- Niederreiter PKCS
- Code-based cryptography
- Random oracle
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 250–272. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1_15
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime (2016). http://eprint.iacr.org/2016/461
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput.33, 167–226 (2004). Society for Industrial and Applied Mathematics, Philadelphia
Alrashdan, M.T., Moghaddam, F.F., Karimi, O.: A hybrid encryption algorithm based on RSA small-e and efficient-RSA for cloud computing environments. J. Adv. Comput. Netw. 1(3), 238–241 (2013)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet Propulsion Laboratory DSN Progress Report 42–44, pp. 114–116 (1978)
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. In: Problems of Control and Information Theory, vol. 15, pp. 159–166 (1986)
Persichetti, E.: Secure and anonymous hybrid encryption from coding theory. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9_12
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (1994)
Turan, M.S., Barker, E.B., Burr, W.E., Chen, L.: Sp 800–132, Recommendation for password-based key derivation: Part 1: storage applications. National Institute of Standards & Technology, Gaithersburg (2010)
Maurich, I., Heberle, L., Güneysu, T.: IND-CCA secure hybrid encryption from QC-MDPC niederreiter. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 1–17. Springer, Cham (2016). doi:10.1007/978-3-319-29360-8_1
Acknowledgment
This work was carried out with financial support of CEA-MITIC for CBC projet and financial support from the government of Senegal’s Ministry of Hight Education and Research for ISPQ Project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cayrel, PL., Gueye, C.T., Mboup, E.H.M., Ndiaye, O., Persichetti, E. (2017). Efficient Implementation of Hybrid Encryption from Coding Theory. In: El Hajji, S., Nitaj, A., Souidi, E. (eds) Codes, Cryptology and Information Security. C2SI 2017. Lecture Notes in Computer Science(), vol 10194. Springer, Cham. https://doi.org/10.1007/978-3-319-55589-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-55589-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55588-1
Online ISBN: 978-3-319-55589-8
eBook Packages: Computer ScienceComputer Science (R0)