Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We discuss harmonic analysis in the settings of both Euclidean and non-Euclidean spaces, and then focus on two specific problems using this analysis – sampling theory and network tomography. These show both the importance of non-Euclidean spaces and some of the challenges one encounters when working in non-Euclidean geometry. Starting with an overview of surfaces, we demonstrate the importance of hyperbolic space in general surface theory, and then develop harmonic analysis in general settings, looking at the Fourier-Helgason transform and its inversion. We then focus on sampling and tomography.

Sampling theory is a fundamental area of study in harmonic analysis and signal and image processing. We connect sampling theory with the geometry of the signal and its domain. It is relatively easy to demonstrate this connection in Euclidean spaces, but one quickly gets into open problems when the underlying space is not Euclidean. We discuss how to extend this connection to hyperbolic geometry and general surfaces, outlining an Erlangen-type program for sampling theory.

The second problem we discuss is network tomography. We demonstrate a way to create a system that will detect viruses as early as possible and work simply on the geometry or structure of the network itself. Our analysis looks at weighted graphs and how the weights change due to an increase in traffic. The analysis is developed by applying the tools of harmonic analysis in hyperbolic space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.V. Ahlfors, Conformal Invariants (McGraw-Hill, New York, 1973)

    MATH  Google Scholar 

  2. L.V. Ahlfors, Complex Analysis, 3rd edn. (McGraw-Hill, New York, 1979)

    MATH  Google Scholar 

  3. J.J. Benedetto, Harmonic Analysis and Applications (CRC Press, Boca Raton, FL, 1997)

    Google Scholar 

  4. C.A. Berenstein, Local tomography and related problems, in Radon Transforms and Tomography. Contemporary Mathematics, vol. 278 (American Mathematical Society, Providence, RI, 2001), pp. 3–14

    Google Scholar 

  5. C.A. Berenstein, S.-Y. Chung, ω-Harmonic functions and inverse conductivity problems on networks. SIAM J. Appl. Math. 65, 1200–1226 (2005)

    Google Scholar 

  6. C.A. Berenstein, E.C. Tarabusi, Integral geometry in hyperbolic spaces and electrical impedance tomography. SIAM J. Appl. Math. 56(3), 755–764 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. C.A. Berenstein, E.C. Tarabusi, J.M. Cohen, M.A. Picardello, Integral geometry on trees. Am. J. Math. 113(3), 441–470 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. C.A. Berenstein, F. Gavilánez, J. Baras, Network Tomography. Contemporary Mathematics, vol. 405 (American Mathematical Society, Providence, RI, 2006), pp. 11–17

    Google Scholar 

  9. M. Calixto, J. Guerrero, Wavelet transform on the circle and the real line: a unified group-theoretical treatment. Appl. Comput. Harmon. Anal. 21, 204–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Calixto, J. Guerrero, Harmonic analysis on groups: sampling theorems and discrete fourier transforms, in Advances in Mathematics Research, vol. 16, ed. by A.R. Baswell (Nova Science Publishers, Inc., New York, 2012), pp. 311–329

    Google Scholar 

  11. M. Calixto, J. Guerrero, J.C. Sánchez-Monreal, Sampling theorem and discrete Fourier transform on the Riemann sphere. J. Fourier Anal. Appl. 14, 538–567 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Calixto, J. Guerrero, J.C. Sánchez-Monreal, Sampling theorem and discrete Fourier transform on the hyperboloid. J. Fourier Anal. Appl. 17, 240–264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.D. Casey, J.G. Christensen, Sampling in euclidean and non-euclidean domains: a unified approach (Chapter 9), in Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, New York, 2015), pp. 331–359

    Google Scholar 

  14. J.G. Christensen, G. Ólafsson, Sampling in spaces of bandlimited functions on commutative spaces, in Excursions in Harmonic Analysis. Applied and Numerical Harmonic Analysis, vol. 1 (Birkhäuser/Springer, New York, 2013), pp. 35–69

    Google Scholar 

  15. N.J. Cornish, J.R. Weeks, Measuring the shape of the universe. Not. Am. Math. Soc. 45(11), 1463–1471 (1998)

    MathSciNet  MATH  Google Scholar 

  16. J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Durastanti, Y. Fantaye, F. Hansen, D. Marinucci, I. Pesenson, Simple proposal for radial 3D needlets. Phys. Rev. D 90, 103532 (2014)

    Article  Google Scholar 

  18. H. Dym, H.P. McKean, Fourier Series and Integrals (Academic, Orlando, FL, 1972)

    MATH  Google Scholar 

  19. H.M. Farkas, I. Kra, Riemann Surfaces (Springer, New York, 1980)

    Book  MATH  Google Scholar 

  20. H. Feichtinger, K. Gröchenig, Iterative reconstruction of multivariate band-limited functions from irregular sampling values. SIAM J. Appl. Math. 23, 244–261 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Feichtinger, K. Gröchenig, Irregular sampling theorems and series expansions of band-limited functions. J. Math. Anal. Appl. 167, 530–556 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Feichtinger, I. Pesenson, Recovery of band-limited functions on manifolds by an iterative algorithm, in Wavelets, Frames and Operator Theory. Contemporary Mathematics, vol. 345 (American Mathematical Society, Providence, RI, 2004), pp. 137–152

    Google Scholar 

  23. H. Feichtinger, I. Pesenson, A reconstruction method for band-limited signals in the hyperbolic plane. Sampl. Theory Signal Image Process. 4(3), 107–119 (2005)

    MathSciNet  MATH  Google Scholar 

  24. O. Forster, Lectures on Riemann Surfaces (Springer, New York, 1981)

    Book  MATH  Google Scholar 

  25. L. Grafakos, Classical and Modern Fourier Analysis (Pearson Education, Upper Saddle River, NJ, 2004)

    MATH  Google Scholar 

  26. K. Gröchenig, Describing functions: atomic decompositions versus frames. Monatsh. Math. 112(1), 1–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Gröchenig, Reconstruction algorithms in irregular sampling. Math. Comput. 59(199), 181–194 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2000)

    MATH  Google Scholar 

  29. K. Gröchenig, G. Kutyniok, K. Seip, Landau’s necessary density conditions for LCA groups. J. Funct. Anal. 255, 1831–1850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Helgason, Geometric Analysis on Symmetric Spaces (American Mathematical Society, Providence, RI, 1994)

    MATH  Google Scholar 

  31. S. Helgason, Groups and Geometric Analysis (American Mathematical Society, Providence, RI, 2000)

    Book  MATH  Google Scholar 

  32. S. Helgason, Integral Geometry and Radon Transforms (Springer, New York, 2010)

    MATH  Google Scholar 

  33. J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Clarendon Press, Oxford, 1996)

    MATH  Google Scholar 

  34. L. Hörmander, The analysis of linear partial differential operators I, in Distribution Theory and Fourier Analysis, 2nd edn. (Springer, New York, 1990)

    MATH  Google Scholar 

  35. C. Joslyn, B. Praggastis, E. Purvine, A. Sathanur, M. Robinson, S. Ranshous, Local homology dimension as a network science measure, in 2016 SIAM Workshop on Network Science (2016), pp. 86–87

    Google Scholar 

  36. J. Keiner, S. Kunis, D. Potts, Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13(4), 435–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Kuchment, Generalized transforms of Radon type and their applications, in Proceedings of Symposia in Applied Mathematics, vol. 63 (American Mathematical Society, Providence, RI, 2006), pp. 67–98

    MATH  Google Scholar 

  38. J.M. Lee, Riemannian Manifolds: An Introduction to Curvature (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  39. B.Ya. Levin, Lectures on Entire Functions (American Mathematical Society, Providence, RI, 1996)

    Google Scholar 

  40. J.D. McEwen, E. Wiaux, A novel sampling theorem on the sphere. IEEE Trans. Signal Process. 59(12), 617–644 (2011)

    Article  MathSciNet  Google Scholar 

  41. J.R. Munkres, Topology, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, 2000)

    MATH  Google Scholar 

  42. T. Munzer, Exploring large graphs in 3D hyperbolic space. IEEE Comput. Graph. Appl. 18(4), 18–23 (1998)

    Article  Google Scholar 

  43. T. Munzer, Interactive visualization of large graphs and networks. Ph.D. dissertation, Stanford University, 2000

    Google Scholar 

  44. F. Natterer, The Mathematics of Computerized Tomography (B. G. Teubner, Stuttgart, 1986)

    MATH  Google Scholar 

  45. H. Nyquist, Certain topics in telegraph transmission theory. AIEE Trans. 47, 617–644 (1928)

    Google Scholar 

  46. I. Pesenson, Reconstruction of Paley-Wiener functions on the Heisenberg group. Am. Math. Soc. Trans. 184(2), 207–216 (1998)

    MathSciNet  MATH  Google Scholar 

  47. I. Pesenson, Sampling of Paley-Wiener functions on stratified groups. Fourier Anal. Appl. 4, 269–280 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. I. Pesenson, Reconstruction of band-limited functions in \(L_{2}(\mathbb{R}^{d})\). Proc. Am. Math. Soc. 127(12), 3593–3600 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. I. Pesenson, A sampling theorem of homogeneous manifolds. Trans. Am. Math. Soc. 352(9), 4257–4269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. I. Pesenson, Sampling of band-limited vectors. Fourier Anal. Appl. 7(1), 93–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. I. Pesenson, Poincare-type inequalities and reconstruction of Paley-Wiener functions on manifolds. J. Geom. Anal. 14(4), 101–121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. I. Pesenson, Frames for spaces of Paley-Wiener functions on Riemannian manifolds, in Contemporary Mathematics, vol. 405 (American Mathematical Society, Providence, RI, 2006), pp. 135–148

    MATH  Google Scholar 

  53. I. Pesenson, Paley-Wiener-Schwartz nearly Parseval frames on noncompact symmetric spaces, in Contemporary Mathematics, vol. 603 (American Mathematical Society, Providence, RI, 2013), pp. 55–81

    MATH  Google Scholar 

  54. M. Robinson, Understanding networks and their behaviors using sheaf theory, in 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2013)

    Google Scholar 

  55. M. Robinson, Imaging geometric graphs using internal measurements. J. Differ. Equ. 260, 872–896 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. A.P. Schuster, Sets of sampling and interpolation in Bergman spaces. Proc. Am. Math. Soc. 125(6), 1717–1725 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. K. Seip, Beurling type density theorems in the unit disk. Invent. Math. 113, 21–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. K. Seip, Regular sets of sampling and interpolation for weighted Bergman spaces. Proc. Am. Math. Soc. 117(1), 213–220 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  59. C.E. Shannon, A mathematical theory of communication. Bell. Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  60. C.E. Shannon, Communications in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  61. I.M. Singer, J.A. Thorpe, Lecture Notes on Elementary Topology and Geometry (Springer, New York, 1967)

    MATH  Google Scholar 

  62. S. Smale, On the mathematical foundations of electrical circuit theory. J. Differ. Geom. 7, 193–210 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Young, An Introduction to Nonharmonic Fourier Series (Academic, New York, 1980)

    MATH  Google Scholar 

Download references

Acknowledgements

Author’s research was partially supported by US Army Research Office Scientific Services program, administered by Battelle (TCN 06150, Contract DAAD19-02-D-0001) and US Air Force Office of Scientific Research Grant Number FA9550-12-1-0430. The author would also like to thank the referees for suggestions that helped improve the paper, his colleague Jens Christensen for conversations relevant to the paper, and his students Danielle Beard, Jackson Williams, and Emma Zaballos for studying various components of the research in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Casey, S.D. (2017). Harmonic Analysis in Non-Euclidean Spaces: Theory and Application. In: Pesenson, I., Le Gia, Q., Mayeli, A., Mhaskar, H., Zhou, DX. (eds) Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55556-0_6

Download citation

Publish with us

Policies and ethics