Skip to main content

Abstract

This contribution discusses interactions between kernel methods, frame analysis, and persistent homology. To this end, we explain recent connections between these research areas, where special emphasis is placed on the discussion of reproducing kernel Hilbert spaces and persistent mechanisms. We show how interactions between these novel methodologies give new opportunities for the construction of numerical algorithms to analyze properties of data that are so far unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Adams, S. Chepushtanova, T. Emerson, E. Hanson, M. Kirby, F. Motta, R. Neville, C. Peterson, P. Shipman, L. Ziegelmeier, Persistent images: a stable vector representation of persistent homology. arXiv preprint arXiv:1507.06217 (2015)

    Google Scholar 

  2. P. Bendich, S. Chin, J. Clarke, J. DeSena, J. Harer, E. Munch, A. Newman, D. Porter, D. Rouse, N. Strawn, A. Watkins, Topological and statistical behavior classifiers for tracking applications. arXiv preprint arXiv:1406.0214 (2014)

    Google Scholar 

  3. A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics (Kluwer Academic Publishers, Boston, MA, 2004)

    Book  MATH  Google Scholar 

  4. H. Boche, M. Guillemard, G. Kutyniok, F. Philipp, Signal analysis with frame theory and persistent homology, in Proceedings of Sampling Theory and Applications (SampTA’13) (2013)

    Google Scholar 

  5. P. Bubenik, Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  6. M.D. Buhmann, Radial Basis Functions (Cambridge University Press, Cambridge, UK, 2003)

    Book  MATH  Google Scholar 

  7. G. Carlsson, Topology and data. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Carrière, S.Y. Oudot, M. Ovsjanikov, Stable topological signatures for points on 3d shapes. Comput. Graph. Forum 34(5), 1–12 (2015)

    Article  Google Scholar 

  9. F. Chazal, V. de Silva, M. Glisse, S. Oudot, The structure and stability of persistence modules. arXiv:1207.3674 (2012)

    Google Scholar 

  10. E. Cheney, Introduction to Approximation Theory, 2nd edn. (McGraw Hill, New York, 1982)

    MATH  Google Scholar 

  11. W. Cheney, W. Light, A Course in Approximation Theory (Brooks/Cole Publishing, Pacific Grove, 2000)

    MATH  Google Scholar 

  12. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Dieudonné, Éléments D’Analyse. Tome 1 (Gauthier-Villars, Paris, 1971)

    Google Scholar 

  14. H. Edelsbrunner, J. Harer, Persistent homology - a survey, in Surveys on Discrete and Computational Geometry: Twenty Years Later: AMS-IMS-SIAM Joint Summer Research Conference, June 18–22, 2006, Snowbird, Utah, vol. 453 (American Mathematical Society, Providence, RI, 2008), p. 257

    Google Scholar 

  15. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, in Proceedings of 41st Annual IEEE Symposium on Foundations Computer Science, pp. 454–463, 2000

    Google Scholar 

  16. M. Fornasier, H. Rauhut, Continuous frames, function spaces, and the discretization problem. J. Fourier Anal Appl. 11(3), 245–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Fukumizu, F.R. Bach, M.I. Jordan, Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. J. Mach. Learn. Res. 5, 73–99 (2004)

    MathSciNet  MATH  Google Scholar 

  18. J. González, M. Guillemard, Algunas aplicaciones de la topología algebráica, in Aportaciones Matemáticas, Sociedad Matemática Mexicana, vol. 42, pp. 153–170, 2011

    Google Scholar 

  19. M. Guillemard, A. Iske, Signal filtering and persistent homology: an illustrative example, in Proceedings of Sampling Theory and Applications (SampTA’11), 2011

    Google Scholar 

  20. M. Griebel, C. Rieger, Reproducing kernel Hilbert spaces for parametric partial differential equations. SIAM/ASA J. Uncertain. Quantif. (to appear). INS Preprint No. 1511, Institut für Numerische Simulation, Universität Bonn, 2015

    Google Scholar 

  21. J.R. Higgins, Sampling in reproducing kernel Hilbert space, in New Perspectives on Approximation and Sampling Theory, ed. by A.I. Zayed, G. Schmeisser (Springer International Publishing Switzerland, Heidelberg, 2014), pp. 23–38

    Google Scholar 

  22. T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Iske, Multiresolution Methods in Scattered Data Modelling (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  24. T. Jordão, V.A. Menegatto, Integral operators generated by multi-scale kernels. J. Complex. 26(2), 187–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.A. Kirillov, A.D. Gvishiani, Theorems and Problems in Functional Analysis (Springer, Berlin, 1982)

    Book  MATH  Google Scholar 

  26. G. Kusano, K. Fukumizu, Y. Hiraoka, Persistence weighted Gaussian kernel for topological data analysis. arXiv preprint arXiv:1601.01741 (2016)

    Google Scholar 

  27. H. Meschkowski, Hilbertsche Räume mit Kernfunktion (Springer, Berlin, 1962)

    Book  MATH  Google Scholar 

  28. H. Minh, P. Niyogi, Y. Yao, Mercer’s theorem, feature maps, and smoothing, in Proceedings of the 19th Annual Conference on Learning Theory (COLT) (2006)

    Google Scholar 

  29. P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with high confidence from random samples. Discret. Comput. Geom. 39(1), 419–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Opfer, Tight frame expansions of multiscale reproducing kernels in Sobolev spaces. Appl. Comput. Harmon. Anal. 20, 357–374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Otter, M.A. Porter, U. Tillmann, P. Grindrod, H.A. Harrington, A roadmap for the computation of persistent homology. arXiv preprint arXiv:1506.08903 (2015)

    Google Scholar 

  32. M.J.D. Powell, Approximation Theory and Methods (Cambridge University Press, Cambridge, 1981)

    MATH  Google Scholar 

  33. A. Rakotomamonjy, S. Canu, Frames, reproducing kernels, regularization and learning. J. Mach. Learn. Res. 6, 1485–1515 (2005)

    MathSciNet  MATH  Google Scholar 

  34. J. Reininghaus, S. Huber, U. Bauer, R. Kwitt, A stable multi-scale kernel for topological machine learning, in 2015 (CVPR ’15), Boston, MA, June (2015)

    Google Scholar 

  35. R. Schaback, Native Hilbert spaces for radial basis functions I. Int. Ser. Numer. Math. 132, 255–282 (1999)

    MathSciNet  MATH  Google Scholar 

  36. R. Schaback, A unified theory of radial basis functions: native Hilbert spaces for radial basis functions II. J. Comput. Appl. Math. 121(1–2), 165–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Schaback, Kernel-Based Meschless Methods (Lecture Notes). Institut für Numerische und Angewandte Mathematik (NAM), Georg-August-Universität Göttingen (2007)

    Google Scholar 

  38. A. Shadrin, Approximation Theory (Lecture Notes) (DAMTP University of Cambridge, Cambridge, 2005)

    Google Scholar 

  39. I. Steinwart, D. Hush, C. Scovel, An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635–4643 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. van der Laan, Signal sampling techniques for data acquisition in process control. PhD thesis, University of Groningen (1995)

    Google Scholar 

  41. H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  42. A. Zomorodian, G. Carlsson, Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mijail Guillemard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guillemard, M., Iske, A. (2017). Interactions Between Kernels, Frames, and Persistent Homology. In: Pesenson, I., Le Gia, Q., Mayeli, A., Mhaskar, H., Zhou, DX. (eds) Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55556-0_14

Download citation

Publish with us

Policies and ethics