Advertisement

Towards a Second Brain Images of Tumours for Evaluation (BITE2) Database

  • I. J. Gerard
  • C. Couturier
  • M. Kersten-Oertel
  • S. Drouin
  • D. De Nigris
  • J. A. Hall
  • K. Mok
  • K. Petrecca
  • T. Arbel
  • D. L. Collins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10154)

Abstract

One of the main challenges facing members of the medical imaging community is the lack of real clinical cases and ground truth datasets with which to validate new registration, segmentation, and other image processing algorithms. In this work we present a collection of data from tumour patients acquired at the Montreal Neurological Institute and Hospital that will be released as a publicly available dataset to the image processing community. The database is comprised of 9 patient data sets, in its initial release, that consist of a preoperative and postoperative, gadolinium enhanced T1w MRI, pre- and post- resection tracked intra-operative ultrasound slices and volumes, expert tumour segmentations following the BRATS benchmark, and intra-operative ultrasound with/and MRI registration validation target points. This database extends the already widely used BITE database by improving the quality of registration validation and the variety of data being made available. By including addition features such as expert tumour segmentations, the database will appeal to a broader spectrum of image processing researchers and be useful for validating a wider range of techniques for image-guided neurosurgery.

Keywords

Database Validation Medical imaging Intra-operative ultrasound 

References

  1. 1.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  2. 2.
    Mercier, L., et al.: Online database of clinical MR and ultrasound images of brain tumors. Med. Phys. 39(6), 3253–3261 (2012)CrossRefGoogle Scholar
  3. 3.
    Guizard, N., et al.: Robust individual template pipeline for longitudinal MR images. In: MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer’s Disease and Related Disorders (2012)Google Scholar
  4. 4.
    Coupe, P., et al.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)CrossRefGoogle Scholar
  5. 5.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  6. 6.
    Gerard, I.J., Kersten-Oertel, M., Drouin, S., Hall, J.A., Petrecca, K., Nigris, D., Arbel, T., Louis Collins, D.: Improving patient specific neurosurgical models with intraoperative ultrasound and augmented reality visualizations in a neuronavigation environment. In: Oyarzun Laura, C., Shekhar, R., Wesarg, S., González Ballester, M.Á., Drechsler, K., Sato, Y., Erdt, M., Linguraru, M.G. (eds.) CLIP 2015. LNCS, vol. 9401, pp. 28–35. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31808-0_4 CrossRefGoogle Scholar
  7. 7.
    Mercier, L., et al.: New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int. J. Comput. Assist. Radiol. Surg. 6(4), 507–522 (2011)CrossRefGoogle Scholar
  8. 8.
    Gerard, I.J., Collins, D.L.: An analysis of tracking error in image-guided neurosurgery. Int. J. Comput. Assist. Radiol. Surg. (2015)Google Scholar
  9. 9.
    De Nigris, D., Collins, D.L., Arbel, T.: Fast rigid registration of pre-operative magnetic resonance images to intra-operative ultrasound for neurosurgery based on high confidence gradient orientations. Int. J. Comput. Assist. Radiol. Surg. 8(4), 649–661 (2013)CrossRefGoogle Scholar
  10. 10.
    Gerard, I.J., et al.: The validation grid: a new tool to validate multimodal image registration. Int. J. CARS 11(1), S1–S316 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • I. J. Gerard
    • 1
  • C. Couturier
    • 2
  • M. Kersten-Oertel
    • 1
  • S. Drouin
    • 1
  • D. De Nigris
    • 3
  • J. A. Hall
    • 2
  • K. Mok
    • 1
  • K. Petrecca
    • 2
  • T. Arbel
    • 1
    • 3
  • D. L. Collins
    • 1
    • 2
    • 3
  1. 1.McConnell Brain Imaging Center, MNIMcGill UniversityMontrealCanada
  2. 2.Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
  3. 3.Centre for Intelligent MachinesMcGill UniversityMontrealCanada

Personalised recommendations