Skip to main content

Plant Epigenetics: Non-coding RNAs as Emerging Regulators

  • Chapter
  • First Online:
Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

  • 2670 Accesses

Abstract

The term non-coding RNA (ncRNA) refers to functional RNA molecules that, despite being transcribed from DNA, are not translated into proteins. These molecules can play an important role in the regulation of gene expression in the eukaryotic cell, and they can act either as long ncRNAs or being processed into small RNAs, being globally classified by their size, function, or genomic origin. In recent years, it has been found that diverse ncRNAs participate directly or indirectly in several epigenetic phenomena controlling different phenotypes within clonal cells, and in the specificity determination of various physiological processes. Although some of their mechanisms of action have been characterized, much remains to be known to understand the highly complex processes in which most of these molecules are involved. In this chapter, we discuss and illustrate examples of different ncRNAs that can interact with the plant epigenomic machinery or intervene in its function, leading to specific epigenetic, transcriptional, and physiological states. We explore the link between chromatin compaction, histone modifications, DNA methylation, gene silencing, and these molecules, which represent a high proportion of the cellular transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen E, Xie Z, Gustafson AM et al (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Ariel F, Jegu T, Latrasse D et al (2014) Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell 55:383–396

    Article  CAS  PubMed  Google Scholar 

  • Ariel F, Romero-Barrios N, Jegu T et al (2015) Battles and hijacks: noncoding transcription in plants. Trends Plant Sci 20:362–371

    Article  CAS  PubMed  Google Scholar 

  • Aung K, Lin S-I, Wu C-C et al (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRN399 target gene. Plant Physiol 141:1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R et al (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    Article  CAS  PubMed  Google Scholar 

  • Bardou F, Ariel F, Simpson CG et al (2014) Long noncoding RNA modulates alternative splicing regulators in arabidopsis. Dev Cell 30:166–176

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Pant BD, Stitt M et al (2006) Phosphate-signaling pathway in plants 1. Plant Physiol 141:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow DP, Stöger R, Herrmann BG et al (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87

    Article  CAS  PubMed  Google Scholar 

  • Blignaut M, Morris KV, Scripps T (2012) Review of non-coding RNAs and the epigenetic regulation of gene expression. A book edited by Kevin Morris. Epigenetics 7:664–666

    Article  PubMed Central  Google Scholar 

  • Boerner S, McGinnis KM (2012) Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS One 7:1–16

    Article  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:1–15

    Article  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    Article  CAS  PubMed  Google Scholar 

  • Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame—containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in medicago truncatula. Plant Cell 16:1047–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  • Chaumeil J, Le Baccon P, Wutz A et al (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Meng Y, Yuan C (2011) Plant siRNAs from introns mediate DNA methylation of host genes. RNA 17(6):1012–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Quan M, Zhang D (2015) Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125–143

    Article  CAS  PubMed  Google Scholar 

  • Chitwood DH, Nogueira FTS, Howell MD et al (2009) Pattern formation via small RNA mobility. Mol Cell Biol 23(5):549–554

    CAS  Google Scholar 

  • Choi K, Kim J, Müller SY et al (2016) Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex in Arabidopsis thaliana. Plant Physiol 171:1128–1143

    PubMed  PubMed Central  Google Scholar 

  • Chooniedass-Kothari S, Emberley E, Hamedani MK et al (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566:43–47

    Article  CAS  PubMed  Google Scholar 

  • Creasey KM, Zhai J, Borges F et al (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:411–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespi MD, Jurkevitch E, Poiret M et al (1994) enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J 13:5099–5112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crevillén P, Sonmez C, Wu Z et al (2013) A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 32:140–148

    Article  PubMed  Google Scholar 

  • Csorba T, Questa JI, Sun Q et al (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci USA 111:16160–16165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deleris A, Greenberg MVC, Ausin I et al (2010) Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO Rep 11:950–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Lu Q, Ouyang Y et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinger ME, Gascoigne DK, Mattick JS (2011) The evolution of RNAs with multiple functions. Biochimie 93:2013–2018

    Article  CAS  PubMed  Google Scholar 

  • Du J, Johnson LM, Groth M et al (2014) Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol Cell 55:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunoyer P, Schott G, Himber C et al (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    Article  CAS  PubMed  Google Scholar 

  • El Hage A, French SL, Beyer AL, Tollervey D (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24:1546–1558

    Google Scholar 

  • Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  • Heo JB, Sung S, Kim DH et al (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Heo JB, Lee Y-S, Sung S (2013) Epigenetic regulation by long noncoding RNAs in plants. Chromosom Res 21:685–693

    Article  CAS  Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721

    Google Scholar 

  • Ietswaart R, Wu Z, Dean C (2012) Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet 28:445–453

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Gaubert H, Bucher E et al (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    Article  CAS  PubMed  Google Scholar 

  • Jabnoune M, Secco D, Lecampion C et al (2013) A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell 25:4166–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauvion V, Rivard M, Bouteiller N et al (2012) RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS. PLoS One 7:7–11

    Article  Google Scholar 

  • Jégu T, Latrasse D, Delarue M et al (2014) The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell 26:538–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Yang W, He Y et al (2007) Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19:2975–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko S, Li G, Son J et al (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 24:2615–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kartha RV, Subramanian S (2014) Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet 5:1–9

    Article  CAS  Google Scholar 

  • Kim MY, Zilberman D (2014) DNA methylation as a system of plant genomic immunity. Trends Plant Sci 19:320–326

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Orom UA, Cesaroni M et al (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Du J, Hale CJ et al (2013) Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang Q, Zhang J et al (2010) Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Li P, Li X et al (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yao X, Pi L et al (2009) The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 58:27–40

    Article  CAS  PubMed  Google Scholar 

  • Marin E, Jouannet V, Herz A et al (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Wilhelm D, Dinger ME et al (2011) Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res 39:2393–2403

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  CAS  PubMed  Google Scholar 

  • Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24:2678–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuthikattu S, McCue AD, Panda K et al (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol 162:116–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Xie S, Liu Y et al (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473

    Article  CAS  PubMed  Google Scholar 

  • Quan M, Chen J, Zhang D (2015) Exploring the secrets of long noncoding RNAs. Int J Mol Sci 16:5467–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qüesta JI, Song J, Geraldo N et al (2016) Arabidopsis transcriptional repressor VAL1 triggers polycomb silencing at FLC during vernalization. Science 3531:485–488

    Article  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Granados NY, Ramirez-Prado JS, Veluchamy A et al (2016) Put your 3D glasses on: plant chromatin is on show. J Exp Bot 67(11):1–17

    Google Scholar 

  • Rohrig H, Schmidt J, Miklashevichs E et al (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA 99:1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronemus M, Vaughn M, Martienssen RA (2006) MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by Argonaute, Dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18:1559–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Lee TF, Liao WW et al (2014a) Distinct and concurrent pathways of Pol II- and Pol IV-dependent siRNA biogenesis at a repetitive trans-silencer locus in Arabidopsis thaliana. Plant J 79:127–138

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Lorković ZJ, Liang SC et al (2014b) The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation. PLoS One 9:1–8

    Google Scholar 

  • Saxena A, Carninci P (2011) Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays 33:830–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SY, Shin C (2016) Regulatory non-coding RNAs in plants: potential gene resources for the improvement of agricultural traits. Plant Biotechnol Rep 10:35–47

    Article  Google Scholar 

  • Shuai P, Liang D, Tang S et al (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Csorba T, Skourti-Stathaki K et al (2013) R-loop stabilization represses. Science 340:619–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T et al (2008) The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol 49:493–500

    Article  CAS  PubMed  Google Scholar 

  • Tanurdzic M, Vaughn MW, Jiang H et al (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2895

    Article  CAS  PubMed  Google Scholar 

  • Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29:288‐299. doi:10.1002/bies.20544

  • Tsai M, Manor O, Wan Y et al (2010) Long noncoding RNA as modular Scaffold of histone modification complexes. Science 329:689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant MicroRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao S, Gu C et al (2013) Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol Biol 83:365–377

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chung PJ, Liu J et al (2014a) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24(3):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z-W, Wu Z, Raitskin O et al (2014b) Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor. Proc Natl Acad Sci USA 111:7468–7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Mao L, Qi Y (2012) Roles of dicer-like and argonaute proteins in TAS-derived small interfering RNA-triggered DNA methylation. Plant Physiol 160:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H-J, Wang Z-M, Wang M et al (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlich M, Grob-Hardt R, Schoffl F (2014) Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol 85:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Yu B (2015) siRNA-directed DNA methylation in plants. Curr Genomics 16:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:642–652

    Article  CAS  Google Scholar 

  • Xin M, Wang Y, Yao Y et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:1–13

    Article  Google Scholar 

  • Ye C-Y, Xu H, Shen E et al (2014) Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Front Plant Sci 5:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY et al (2005) A pathway for the biogenesis of trans -acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    Google Scholar 

  • Yoshikawa M, Iki T, Tsutsui Y et al (2013) 3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3. Proc Natl Acad Sci USA 110:4117–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa M, Iki T, Numa H et al (2016) A role of a short open reading frame encompassing the microRNA173 target site of the TAS2 transcript in trans-acting small interfering RNA biogenesis. Plant Physiol 171:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Yang J, Li X et al (2013) Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa. BMC Plant Biol 13:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Bischof S, Wang H et al (2015) A one precursor one siRNA model for pol IV-dependent siRNA biogenesis. Cell 163:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jurkowska R, Soeroes S et al (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38:4246–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-C, Liao J-Y, Li Z-Y et al (2014a) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:1–16

    Article  Google Scholar 

  • Zhang Y, Yan C, Kuang H (2014b) GC content fluctuation around plant small RNA-generating sites. FEBS Lett 588:764–769

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Hu F, Wang R et al (2011) Arabidopsis argonaute 10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:1–27

    Article  Google Scholar 

  • Zubko E, Meyer P (2007) A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J 52:1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory of M.C. is funded by the “Agence Nationale de la Recherche” in France through the ANR RNAdapt project and Saclay Plant Sciences Labex (SPS, ANR-10-LABX-40). An international KAUST (Saudi Arabia)—INRA (France) grant (EPIMMUNITY) is also acknowledged. J.S.R-P. is a KAUST Ph.D. fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Crespi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ramirez-Prado, J.S., Ariel, F., Benhamed, M., Crespi, M. (2017). Plant Epigenetics: Non-coding RNAs as Emerging Regulators. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_7

Download citation

Publish with us

Policies and ethics