Small RNAs: Master Regulators of Epigenetic Silencing in Plants

  • Sarma Rajeev Kumar
  • Safia
  • Ramalingam Sathishkumar
Chapter
Part of the RNA Technologies book series (RNATECHN)

Abstract

From fairly simple beginnings, research on epigenetic silencing in plants has revealed a highly complex epigenetic pathway. In the last two decades, several interesting phenomena associated with epigenetic regulation in plants were dissected giving insights into the biological significance of epigenetic marks and the role it plays in an organism’s life cycle by controlling different physiological processes like plant development, morphogenesis, reproduction, and stress response. Epigenetics refers to either heritable or reversible genetic modifications in DNA or histone proteins that maintain the nucleosome structure in a dynamic manner or those mediated by small RNAs (sRNAs) that in turn modulate gene expression. Plants are equipped with intricate regulatory mechanism to elicit highly sequence-specific chromatin-based gene silencing. Diverse classes of RNAs like small interfering RNA (siRNA), microRNAs (miRNAs), and long noncoding RNAs (lnc RNAs) have emerged as key regulators of gene expression along with several accessory proteins. sRNAs are widespread in various eukaryotes and are specifically involved in the maintenance of chromatin modifications in plants. These sRNAs regulate gene expression in different ways including post-transcriptional gene silencing (PTGS) in cytosol by targeting complementary transcripts for degradation, thereby repressing protein synthesis. In nucleus, sRNAs are responsible for transcriptional gene silencing (TGS) by directing epigenetic modifications like cytosine or histone methylation to homologous regions of the genome. This chapter gives an overview of the role of small RNAs in PTGS and TGS.

Keywords

DNA methylation miRNAs Post-transcriptional gene silencing sRNA Transcriptional gene silencing Transposon silencing 

References

  1. Alleman M, Sidorenko L, McGinnis K et al (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295–298PubMedCrossRefGoogle Scholar
  2. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 11:2730–2741CrossRefGoogle Scholar
  3. Baker CC, Sieber P, Wellmer F et al (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315PubMedCrossRefGoogle Scholar
  4. Barreto G, Schafer A, Marhold J et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675PubMedCrossRefGoogle Scholar
  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  6. Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development. Plant Physiol 132:709–717PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363PubMedCrossRefGoogle Scholar
  8. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213PubMedCrossRefGoogle Scholar
  9. Bond DM, Baulcombe DC (2014) Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol 24:100–107PubMedCrossRefGoogle Scholar
  10. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741PubMedPubMedCentralCrossRefGoogle Scholar
  11. Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boss PK, Bastow RM, Mylne JS et al (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18–S31PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bossdorf O, Arcuri D, Richards CL et al (2010) Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol 24:541–553CrossRefGoogle Scholar
  14. Boualem A, Laporte P, Jovanovic M et al (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887PubMedCrossRefGoogle Scholar
  15. Cao XF, Jacobsen SE (2002a) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99(suppl 4):16491–16498PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cao X, Jacobsen SE (2002b) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144PubMedCrossRefGoogle Scholar
  17. Cartolano M, Castillo R, Efremova N et al (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905PubMedCrossRefGoogle Scholar
  18. Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360PubMedCrossRefGoogle Scholar
  20. Chandler VL, Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A 83:1767–1771PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chellappan P, Xia J, Zhou X et al (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen X (2004) A microRNA as a translational represser of APETALA2 in Arabidopsis flower development. Science 303:2022–2025PubMedCrossRefGoogle Scholar
  23. Chuck G, Cigan AM, Saeteurn K et al (2007) The heterochronic maize mutant corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549PubMedCrossRefGoogle Scholar
  24. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219PubMedPubMedCentralCrossRefGoogle Scholar
  25. Combier JP, Frugier F, De Billy F et al (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088PubMedPubMedCentralCrossRefGoogle Scholar
  26. Depicker A, Sanders M, Meyer P (2005) Transgene silencing. Plant Epigenetics 19:1–32CrossRefGoogle Scholar
  27. Finke A, Kuhlmann M, Mette MF (2012) IDN2 has a role downstream of siRNA formation in RNA directed DNA methylation. Epigenetics 7:950–960PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fujimoto R, Kinoshita Y, Kawabe A et al (2008) Evolution and control of imprinted FWA genes in the genus Arabidopsis. PLoS Genet 4:e1000048PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gao Z, Liu HL, Daxinger L et al (2010) An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gazzani S, Gendall AR, Lister C et al (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gerald JNF, Hui PS, Berger F (2009) Polycomb group-dependent imprinting of the actin regulator AtFH5 regulates morphogenesis in Arabidopsis thaliana. Development 136:3399–3404CrossRefGoogle Scholar
  32. Guleria P, Mahajan M, Bhardwaj J et al (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics 9:183–199PubMedCrossRefGoogle Scholar
  33. Guo HS, Xie Q, Fei JF et al (2005) Micro RNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post transcriptional gene silencing in plants. Science 286:950–952PubMedCrossRefGoogle Scholar
  35. Havecker ER, Wallbridge LM, Hardcastle TJ et al (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hilbricht T, Varotto S, Sgaramella V et al (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179:877–887PubMedCrossRefGoogle Scholar
  37. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ito H (2012) Small RNAs and transposon silencing in plants. Dev Growth Differ 54:100–107PubMedCrossRefGoogle Scholar
  39. Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014PubMedCrossRefGoogle Scholar
  40. Jia X, Yan J, Tang G (2011) Micro RNA-mediated DNA methylation in plants. Front Biol 6:133–139CrossRefGoogle Scholar
  41. Johannes F, Porcher E, Teixeira FK et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:1000530CrossRefGoogle Scholar
  42. Juarez MT, Kui JS, Thomas J et al (2004) MicroRNA-mediated repression of rolled leaf specifies maize leaf polarity. Nature 428:84–88PubMedCrossRefGoogle Scholar
  43. Jullien PE, Kinoshita T, Ohad N et al (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811PubMedCrossRefGoogle Scholar
  45. Kanno T, Huettel B, Mette MF et al (2005) A typical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37:761–765PubMedCrossRefGoogle Scholar
  46. Kanno T, Bucher E, Daxinger L et al (2008) A structural maintenance of chromosome hinge domain-containing protein is required for RNA-directed DNA methylation. Nat Genet 40:670–675PubMedCrossRefGoogle Scholar
  47. Kanno T, Bucher E, Daxinger L et al (2010) RNA-directed DNA methylation and plant development require an IWR1-type transcription factor. EMBO Rep 11:65–71PubMedCrossRefGoogle Scholar
  48. Kathiria P, Sidler C, Golubov A et al (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870PubMedPubMedCentralCrossRefGoogle Scholar
  49. Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103:18002–18007PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kato M, Takashima K, Kakutani T (2004) Epigenetic control of CACTA transposon mobility in Arabidopsis. Genetics 168:961–969PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kinoshita T, Yadegari R, Harada JJ et al (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kinoshita T, Miura A, Choi Y et al (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523PubMedCrossRefGoogle Scholar
  53. Kinoshita Y, Saze H, Kinoshita T et al (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49:38–45PubMedCrossRefGoogle Scholar
  54. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758PubMedPubMedCentralCrossRefGoogle Scholar
  55. Latzel V, Zhang Y, Moritz K et al (2012) Epigenetic variation in plant responses to defence hormones. Ann Bot 110:1423–1428PubMedPubMedCentralCrossRefGoogle Scholar
  56. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220PubMedPubMedCentralCrossRefGoogle Scholar
  57. Law JA, Du J, Hale CJ et al (2013) Polymerase-IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–389PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lee TF, Gurazada SG, Zhai J et al (2012) RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats. Epigenetics 7:781–795PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lelandais-Briere C, Naya L, Sallet E et al (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lelandais-Briere C, Sorin C, Declerck M et al (2010) Small RNA diversity in plants and its impact in development. Curr Genomics 11:14–23PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li Y, Zhang Q, Zhang J et al (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li F, Pignatta D, Bendix C et al (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370PubMedCrossRefGoogle Scholar
  65. Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476PubMedCrossRefGoogle Scholar
  66. Liu J, He Y, Amasino R et al (2004) siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev 18:2873–2878PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lorković ZJ, Naumann U, Matzke AJM et al (2012) Involvement of a GHKL ATPase in RNA directed DNA methylation in Arabidopsis thaliana. Curr Biol 22:933–938PubMedCrossRefGoogle Scholar
  68. Matzke M, Kanno T, Daxinger L et al (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376PubMedCrossRefGoogle Scholar
  69. Melnyk CW, Molnar A, Bassett A et al (2011) Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 21:1678–1683PubMedCrossRefGoogle Scholar
  70. Michaels SD, He YH, Scortecci KC et al (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100:10102–10107PubMedPubMedCentralCrossRefGoogle Scholar
  71. Moldovan D, Spriggs A, Yang J et al (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177PubMedCrossRefGoogle Scholar
  72. Mosher RA, Schwach F, Studholme D et al (2008) PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc Natl Acad Sci U S A 105:3145–3150PubMedPubMedCentralCrossRefGoogle Scholar
  73. Moxon S, Jing R, Szittya G et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nagasaki H, Itoh JI, Hayashi K et al (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci U S A 104:14867–14871PubMedPubMedCentralCrossRefGoogle Scholar
  75. Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  76. Nicholson AW (2014) Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdiscip Rev RNA 5:31–48PubMedCrossRefGoogle Scholar
  77. Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M et al (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632PubMedPubMedCentralCrossRefGoogle Scholar
  78. Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263PubMedCrossRefGoogle Scholar
  79. Park W, Li J, Song R et al (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 21:1484–1495CrossRefGoogle Scholar
  80. Park MY, Wu G, Gonzalez-Sulser A et al (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 8:3691–3696CrossRefGoogle Scholar
  81. Pikaard CS, Mittelsten Scheid O (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a019315PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pontier D, Yahubyan G, Vega D et al (2005) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19:2030–2040PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rajeevkumar S, Anunanthini P, Sathishkumar R (2015) Epigenetic silencing in transgenic plants. Front Plant Sci 6:693PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rasmann S, De Vos M, Casteel CL et al (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863PubMedCrossRefGoogle Scholar
  85. Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520PubMedCrossRefGoogle Scholar
  86. Schwab R, Palatnik JF, Riester M et al (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527PubMedCrossRefGoogle Scholar
  87. Scoville AG, Barnett LL, Bodbyl-Roels S et al (2011) Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus Guttatus. New Phytol 191:251–263PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sidorenko L, Dorweiler JE, Cigan AM et al (2009) A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes. PLoS Genet 5:e1000725PubMedPubMedCentralCrossRefGoogle Scholar
  89. Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14:148–155PubMedCrossRefGoogle Scholar
  90. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sunkar R, Chinnusamy V, Zhu J et al (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309PubMedCrossRefGoogle Scholar
  93. Takuno S, Gaut BS (2012) Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol Biol Evol 29:219–227PubMedCrossRefGoogle Scholar
  94. Tang G, Reinhart BJ, Bartel DP et al (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedPubMedCentralCrossRefGoogle Scholar
  95. Vaucheret H, Vazquez F, Crété P et al (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197PubMedPubMedCentralCrossRefGoogle Scholar
  96. Vielle-Calzada JP, Thomas J, Spillane C et al (1999) Maintenance of genomic imprinting at the Arabidopsis Medea locus requires zygotic DDM1 activity. Genes Dev 13:2971–2982PubMedPubMedCentralCrossRefGoogle Scholar
  97. Volkov RA, Komarova NY, Zentgraf U et al (2006) Molecular cell biology: epigenetic gene silencing in plants. Prog Bot 67:101–133Google Scholar
  98. Wang JW, Wang LJ, Mao YB et al (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216PubMedPubMedCentralCrossRefGoogle Scholar
  99. Wierzbicki AT (2012) The role of long non-coding RNAs in transcriptional gene silencing. Curr Opin Plant Biol 15:517–522PubMedCrossRefGoogle Scholar
  100. Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wierzbicki AT, Ream TS, Haag JR et al (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41:630–634PubMedPubMedCentralCrossRefGoogle Scholar
  102. Williams L, Grigg SP, Xie M et al (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668PubMedCrossRefGoogle Scholar
  103. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218PubMedCrossRefGoogle Scholar
  104. Wu L, Zhou H, Zhang Q et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475PubMedCrossRefGoogle Scholar
  105. Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yamasaki H, Abdel-Ghany SE, Cohu CM et al (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378PubMedCrossRefGoogle Scholar
  107. Yao Y, Ni Z, Peng H et al (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.) Funct Integr Genomics 10:187–190PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ye R, Wang W, Iki T et al (2012) Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. Mol Cell 46:859–870PubMedCrossRefGoogle Scholar
  109. Yu A, Lepère G, Jay F et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 110:2389–2394PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhang B, Pan X, Cobb GP et al (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16PubMedCrossRefGoogle Scholar
  111. Zhang X, Henderson IR, Lu C et al (2007) Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci U S A 104:4536–4541PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zhang Z, Wei L, Zou X et al (2008) Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102:509–519PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhang X, Zhao H, Gao S et al (2011) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393 mediated silencing of a Golgi-localized snare gene, MEMB12. Mol Cell 42:356–366PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhang CJ, Ning YQ, Zhang SW et al (2012) IDN2 and its paralogs form a complex required for RNA-directed DNA methylation. PLoS Genet 8:e1002693PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhang H, He X, Zhu JK (2013a) RNA-directed DNA methylation in plants: where to start? RNA Biol 10:1593–1596PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zhang H, Ma ZY, Zeng L et al (2013b) DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of pol IV. Proc Natl Acad Sci U S A 110:8290–8295PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3:103PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhou L, Liu Y, Liu Z et al (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168PubMedCrossRefGoogle Scholar
  119. Zhu QH, Spriggs A, Matthew L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zilberman D, Henikoff S (2004) Silencing of transposons in plant genomes: kick them when they’re down. Genome Biol 5:249PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965PubMedCrossRefGoogle Scholar
  122. Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719PubMedCrossRefGoogle Scholar
  123. Zilberman D, Cao X, Johansen LK et al (2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14:1214–1220PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sarma Rajeev Kumar
    • 1
  • Safia
    • 2
  • Ramalingam Sathishkumar
    • 2
  1. 1.Molecular Plant Biology and Biotechnology LaboratoryCSIR—Central Institute of Medicinal and Aromatic Plants Research CentreBangaloreIndia
  2. 2.Plant Genetic Engineering Laboratory, Department of BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations