Skip to main content

Growing Diversity of Plant MicroRNAs and MIR-Derived Small RNAs

  • Chapter
  • First Online:
Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Small, noncoding RNAs are essential regulatory molecules of plant genome. Small RNAs (sRNAs) have been classified on the basis of their biogenesis and mode of action in two major types—microRNAs (miRNAs) and small interfering RNAs (siRNAs). Plant miRNAs are typically 21 nucleotides in length and derive from unique genetic loci (MIR genes). Next-generation sequencing approaches have increased significantly the number of known plant miRNAs and have revealed that MIR genes frequently produce sRNAs, known as miRNA variants, isoforms or isomiRs, which exhibit differences from their corresponding “reference” mature sequences. The main mechanism of action of canonical miRNAs is sequence-specific repression of gene expression on posttranscriptional level. Recent studies have revealed that noncanonical miRNAs and MIR-derived siRNAs (a particular subset of isomiRs) can act as well in sequence-specific transcriptional silencing thus influencing genome function through DNA methylation. Moreover, miRNAs can be regulated by epigenetic alteration such as DNA methylation and histone modifications of MIR genes. Having profound role in genetic and epigenetic control, plant miRNAs, and MIR-derived siRNAs can potentially participate in most developmental processes, plant stress response, and adaptation. In this chapter, we discuss the biogenesis of miRNAs and MIR-derived sRNAs and their regulatory impact on plant gene expression.

The algorithms for accurate annotation of novel miRNAs and isomiR sequences are still a challenging task, requiring integration of experimental and computational approaches. Here, we shortly present some recent tools which have been developed to facilitate this task by providing friendly user interface, without requiring computing skills for the purpose of the analysis.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-55520-1_26.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-55520-1_26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Yoshikawa T, Nosaka M et al (2010) WAVY LEAF1, an ortholog of arabidopsis HEN1, regulates shoot development by maintaining microRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol 154:1335–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and microRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM et al (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM et al (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488

    Google Scholar 

  • An J, Lai J, Sajjanhar A et al (2014) miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics 15:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avramova Z (2011) Handbook of epigenetics. In: Tollefsbol T (ed) The new molecular and medical genetics. Elsevier, Amsterdam, pp 251–278

    Google Scholar 

  • Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R et al (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    Article  CAS  PubMed  Google Scholar 

  • Baev V, Milev I, Naydenov M et al (2014) Insight into small RNA abundance and expression in high- and low-temperature stress response using deep sequencing in Arabidopsis. Plant Physiol Biochem 84:105–114

    Article  CAS  PubMed  Google Scholar 

  • Bao N, Lye K-W, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Betel D, Wilson M, Gabow A et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Xia J, Zhou X et al (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ci D, Song Y, Tian M et al (2015) Methylation of miRNA genes in the response to temperature stress in Populussimonii. Front Plant Sci 6:921

    Article  PubMed  PubMed Central  Google Scholar 

  • Colaiacovo M, Bernardo L, Centomani I et al (2012) A survey of MicroRNA length variants contributing to miRNome complexity in peach (PrunusPersica L.) front. Plant Sci 3:165

    CAS  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira LF, Christoff AP, Margis R (2013) isomiRID: a framework to identify microRNA isoforms. Bioinformatics 29:2521–2523

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Li D, Ohler U et al (2012) Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach. BMC Genomics 13:S3–S3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Evers M, Huttner M, Dueck A et al (2015) miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinformatics 16:370

    Article  PubMed  PubMed Central  Google Scholar 

  • Folkes L, Moxon S, Woolfenden HC et al (2012) PAREsnip: a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing. Nucleic Acids Res 40:e103–e103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German MA, Pillay M, Jeong D-H et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotech 26:941–946

    Article  CAS  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:143–1164

    Article  CAS  Google Scholar 

  • Gregory BD, O’Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Develop Cell 14:854–866

    Article  CAS  Google Scholar 

  • Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Yu J, Liang T et al (2016) miR-isomiRExp: a web-server for the analysis of expression of miRNA at the miRNA/isomiR levels. Scientific Rep 6:23700

    Article  CAS  Google Scholar 

  • Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 39:W132–W138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberg M, Shi B-J, Gustafson P et al (2013) Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol 13:214–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsu PWC, Huang H-D, Hsu S-D et al (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34:D135–D139

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Wang T, Xu J et al (2014) MicroRNA mediates DNA methylation of target genes. Biochem Biophys Res Commun 444:676–681

    Article  CAS  PubMed  Google Scholar 

  • Humphreys DT, Suter CM (2013) miRspring: a compact standalone research tool for analyzing miRNA-seq data. Nucleic Acids Res 41:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056

    Article  PubMed  CAS  Google Scholar 

  • Jeong DH, Thatcher SR, Brown RS et al (2013) Comprehensive investigation of microRNAs enhanced by analysis of sequence variants, expression patterns, ARGONAUTE loading, and target cleavage. Plant Physiol 162:1225–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades Matthew W, Bartel David P (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ et al (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:e57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Nat Acad Sci U S A 103:18002–18007

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A et al (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI et al (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Benhamed M, Servet C et al (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899–909

    Article  CAS  PubMed  Google Scholar 

  • Kravchik M, Damodharan S, Stav R et al (2014) Generation and characterization of a tomato DCL3-silencing mutant. Plant Sci 221–222:81–89

    Article  PubMed  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25–R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei J, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30:2837–2839

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Li Y, Kristiansen K et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li F, Orban R, Baker B (2012) SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70:891–901

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hao L, Li D et al (2015) Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinformatics 13:137–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Llave C, Xie Z, Kasschau KD et al (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Fusaro AF, Smith NA et al (2006) The evolution and diversification of Dicers in plants. FEBS Lett 580:2442–2450

    Article  CAS  PubMed  Google Scholar 

  • McConnell JR, Emery J, Eshed Y et al (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • Megraw M, Sethupathy P, Corda B et al (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Shao C (2012) Large-scale identification of mirtrons in Arabidopsis and rice. PLoS ONE 7:e31163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mette MF, van der Winden J, Matzke M et al (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár A, Schwach F, Studholme DJ et al (2007) miRNAs control gene expression in the single-cell alga Chlamydomonasreinhardtii. Nature 447:1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller H, Marzi MJ, Nicassio F (2014) IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotechnol 2:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Mérida A, Perkins JR, Viguera E et al (2012) Semirna: searching for plant miRNAs using target sequences. OMICS 16:168–177

    Article  PubMed  CAS  Google Scholar 

  • Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet 28:544–549

    Article  CAS  PubMed  Google Scholar 

  • Nosaka M, Itoh J-I, Nagato Y et al (2012) Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. PLoS Genet 8:e1002953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosaka M, Ono A, Ishiwata A et al (2013) Expression of the rice microRNA miR820 is associated with epigenetic modifications at its own locus. Genes Genet Syst 88:105–112

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Phillips MD, Tyler DM et al (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15:354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantano L, Estivill X, Martí E (2011) A non-biased framework for the annotation and classification of the non-miRNA small RNA transcriptome. Bioinformatics 27:3202–3203

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R et al (2002) CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra D, Fasold M, Langenberger D et al (2014) plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants. Front Plant Sci 5:708

    Article  PubMed  PubMed Central  Google Scholar 

  • Prüfer K, Stenzel U, Dannemann M et al (2008) PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 24:1530–1531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian K, Auvinen E, Greco D et al (2012) miRSeqNovel: An R based workflow for analyzing miRNA sequencing data. Mol Cell Probes 26:208–2011

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:490–1492

    Article  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Develop 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rogans SJ, Rey C (2016) Unveiling the micronome of cassava (Manihot esculenta Crantz). PLoS One 11:e0147251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rueda A, Barturen G, Lebrón R et al (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43:W467–W473

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Sablok G, Milev I, Minkov G et al (2013) isomiRex: web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett 587:2629–2634

    Article  CAS  PubMed  Google Scholar 

  • Sablok G, Srivastva AK, Suprasanna P et al (2015) isomiRs: increasing evidences of isomiRs complexity in plant stress functional biology. Front Plant Sci 6:949–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Salmena L, Poliseno L, Tay Y et al (2011) AceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Ci D, Tian M et al (2016) Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populussimonii. J Exp Bot 67:1477–1492

    Article  CAS  PubMed  Google Scholar 

  • Stocks MB, Moxon S, Mapleson D et al (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Evans J, Bhagwate A et al (2014) CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics 15:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Szcześniak MW, Deorowicz S, Gapski J et al (2012) miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acids Res 40:D198–D204

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T et al (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500

    Article  CAS  PubMed  Google Scholar 

  • Tong Y-A, Peng H, Zhan C et al (2013) Genome-wide analysis reveals diversity of rice intronic miRNAs in sequence structure, biogenesis and function. PLoS One 8:63938

    Article  Google Scholar 

  • Tu B, Liu L, Xu C et al (2015) Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet 11:e1005119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urgese G, Paciello G, Acquaviva A et al (2016) isomiR-SEA: an RNA-Seq analysis tool for miRNAs/isomiRs expression level profiling and miRNA-mRNA interaction sites evaluation. BMC Bioinformatics 17:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Develop 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Blevins T, Ailhas J et al (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 36:6429–6438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang S, Dou Y et al (2015) Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3′ tailing of small RNAs in Arabidopsis. PLoS Genet 11:e1005091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wassenegger M, Heimes S, Riedel L et al (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Zhang D, Xiang F et al (2009) Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci 170:979–989

    Article  CAS  Google Scholar 

  • Wen M, Shen Y, Shi S et al (2012) miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhang Q, Zhou H et al (2009) Rice microRNA effector complexes and targets. Plant Cell 21:3421–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhou H, Zhang Q et al (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Wu H-J, Ma Y-K, Chen T et al (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu Q, Wang X et al (2013a) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10:1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Liu D, Wu J et al (2013b) Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. Plant Cell 25:4363–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:e104

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie F, Xiao P, Chen D et al (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    Article  CAS  Google Scholar 

  • Xu X, Bai H, Liu C, Chen E, Chen Q, Zhuang J et al (2014) Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One 9(12):e114313

    Google Scholar 

  • Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615

    Article  CAS  PubMed  Google Scholar 

  • Yang J-H, Qu L-H (2012) Deepbase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data. In: Fan J-B (ed) Next-generation microRNA expression profiling technology: methods and protocols. Humana Press, Totowa, NJ, pp 233–248

    Chapter  Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yu J, Li D et al (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xia J, Lii YE et al (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13:R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zang Q, Zhang H et al (2016) DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res 44:W166–W175

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Zhu J, Kapoor A et al (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26:1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Li Y-F, Sunkar R et al (2012) SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res 40:e28

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q-H, Spriggs A, Matthew L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman D, Cao X, Jacobsen SE (2003) Control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariyana Gozmanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gozmanova, M., Baev, V., Apostolova, E., Sablok, G., Yahubyan, G. (2017). Growing Diversity of Plant MicroRNAs and MIR-Derived Small RNAs. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_3

Download citation

Publish with us

Policies and ethics