Skip to main content

Developing an Event-Tree Probabilistic Tsunami Inundation Model for NE Atlantic Coasts: Application to a Case Study

  • 876 Accesses

Part of the Pageoph Topical Volumes book series (PTV)

Abstract

This study constitutes a preliminary assessment of probabilistic tsunami inundation in the NE Atlantic region. We developed an event-tree approach to calculate the likelihood of tsunami flood occurrence and exceedance of a specific near-shore wave height for a given exposure time. Only tsunamis of tectonic origin are considered here, taking into account local, regional, and far-field sources. The approach used here consists of an event-tree method that gathers probability models for seismic sources, tsunami numerical modeling, and statistical methods. It also includes a treatment of aleatoric uncertainties related to source location and tidal stage. Epistemic uncertainties are not addressed in this study. The methodology is applied to the coastal test-site of Sines located in the NE Atlantic coast of Portugal. We derive probabilistic high-resolution maximum wave amplitudes and flood distributions for the study test-site considering 100- and 500-year exposure times. We find that the probability that maximum wave amplitude exceeds 1 m somewhere along the Sines coasts reaches about 60 % for an exposure time of 100 years and is up to 97 % for an exposure time of 500 years. The probability of inundation occurrence (flow depth >0 m) varies between 10 % and 57 %, and from 20 % up to 95 % for 100- and 500-year exposure times, respectively. No validation has been performed here with historical tsunamis. This paper illustrates a methodology through a case study, which is not an operational assessment.

Keywords

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, L. M., LeVeque, R. J., & González, F. I. (2015). The pattern method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, 76, 19–39.

    CrossRef  Google Scholar 

  • Andrade, C., Andrade, A. M., Kortekaas, S., & Dawson, A. (1997), Sedimentological traces of tsunamigenic overwash of the Martinhal lowland (Western Algarve, Portugal). In Proceedings Seminário da ZonaCosteira do Algarve, Faro, 10–12, Eurocast-Portugal, 11–18.

    Google Scholar 

  • Andrade, C., Borges, P., & Freitas, M. C. (2006). Historical tsunami in the Azores archipelago (Portugal). Journal of Volcanology and Geothermal Research, 156(1), 172–185.

    CrossRef  Google Scholar 

  • Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure and Applied Geophysics, 164, 577–592.

    CrossRef  Google Scholar 

  • Baptista, M. A., Heitor, S., Miranda, J. M., Miranda, P., & Mendes Victor, L. (1998). The 1755 Lisbon tsunami; evaluation of the tsunami parameters. Journal of Geodynamics, 25, 143–157.

    CrossRef  Google Scholar 

  • Baptista, M. A., & Miranda, J. M. (2009). Revision of the Portuguese catalog of tsunamis. Natural Hazards and Earth Systems Sciences, 9, 25–42.

    CrossRef  Google Scholar 

  • Baptista, M. A., Miranda, J. M., Chierici, F., & Zitellini, N. (2003). New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling. Natural Hazards and Earth Systems Sciences, 3(5), 333–340.

    CrossRef  Google Scholar 

  • Baptista, M. A., Miranda, J. M., Omira, R., & Antunes, C. (2011). Potential inundation of Lisbon downtown by a 1755-like tsunami. Natural Hazards and Earth Systems Sciences, 11, 3319–3326.

    CrossRef  Google Scholar 

  • Burbidge, D., Cummins, P. R., Mleczko, R., & Thio, H. K. (2008). A probabilistic tsunami hazard assessment for Western Australia. Pure and Applied Geophysics, 165(11–12), 2059–2088.

    CrossRef  Google Scholar 

  • Coppersmith, K. J., & Youngs, R. R. (1986). Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments. In Proceedings of the Third U.S. National Conference on Earthquake Engineering, Charleston, South Carolina, pp. 301–312.

    Google Scholar 

  • Costa, P. J., Andrade, C., Freitas, M. C., Oliveira, M. A., Silva, C. M., Omira, R., et al. (2011). Boulder deposition during major tsunami events. Earth Surface Processes and Landforms, 36(15), 2054–2068.

    CrossRef  Google Scholar 

  • Dao, M. H., & Tkalich, P. (2007). Tsunami propagation modeling—a sensitivity study. Natural Hazards and Earth Systems Sciences, 7, 741–754.

    CrossRef  Google Scholar 

  • Fernandes, R. M. S., Ambrosius, B. A. C., Noomen, R., Bastos, L., Wortel, M. J. R., Spakman, W., et al. (2003). The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophysical Research Letters, 30(16), 1828.

    CrossRef  Google Scholar 

  • Geist, E. L., & Dmowska, R. (1999). Local tsunamis and distributed slip at the source. Pure and Applied Geophysics, 154, 485–512.

    CrossRef  Google Scholar 

  • Geist, E. L., & Lynett, P. J. (2014). Source processes for the probabilistic assessment of tsunami hazards. Oceanography, 27(2), 86–93.

    CrossRef  Google Scholar 

  • Geist, E. L., & Parsons, T. (2006). Probabilistic Analysis of Tsunami Hazards. Natural Hazards, 37(3), 277–314.

    CrossRef  Google Scholar 

  • González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research (Oceans), 114(C11), 1978–2012.

    Google Scholar 

  • González, F. I., Randall, J. L., & Loyce, M. A. (2013). Probabilistic tsunami hazard assessment (PTHA) for Crescent City, CA. Final Report for Phase I. University of Washington Department of Applied Mathmatics. http://faculty.washington.edu/rjl/pubs/CCptha/CCpthaFinalReport.pdf. Accessed 01 Feb 2016.

  • Gutscher, M. A., Malod, J., Rehault, J. P., Contrucci, I., Klingelhoefer, F., Mendes-Victor, L., et al. (2002). Evidence for active subduction beneath Gibraltar. Geology, 30(12), 1071–1074.

    CrossRef  Google Scholar 

  • Harbitz, C. B., Glimsdal, S., Bazin, S., Zamora, N., Løvholt, F., Bungum, H., et al. (2012). Tsunami hazard in the Caribbean: Regional exposure derived from credible worst case scenarios. Continental Shelf Research, 38, 1–23.

    CrossRef  Google Scholar 

  • Instituto Hidrográfico de Portugal (2010). Aproximações a Sines. Plano de Porto de Sines no. 26408 (3rd ed.) Marinha, Instituto Hidrográfico. Lisbon.

    Google Scholar 

  • Instituto Hidrográfico de Portugal (2012). Bathymetric model of Sines. Modelo Batimetrico de Sines. http://www.hidrografico.pt/download-gratuito.php. Accessed 01 Feb 2016.

  • Johnston, A. (1996). Seismic moment assessment of earthquakes in stable continental regions III. New Madrid, 1811–1812, Charleston 1886 and Lisbon 1755. Geophysical Journal International, 126, 314–344.

    CrossRef  Google Scholar 

  • Kaabouben, F., Baptista, M. A., Brahim, A. I., El Mouraouah, A., & Toto, A. (2009). On the moroccan tsunami catalogue. Natural Hazards and Earth Systems Sciences, 9, 1227–1236.

    CrossRef  Google Scholar 

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161, 1655–1681

    CrossRef  Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II, incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82, 120–134.

    Google Scholar 

  • Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.

    CrossRef  Google Scholar 

  • Liu, P. L. F., Woo, S. B., & Cho, Y. S., (1998). Computer programs for tsunami propagation and inundation. Technical report, Cornell University.

    Google Scholar 

  • Lo Iacono, C., Gràcia, E., Zaniboni, F., Pagnoni, G., Tinti, S., Bartolomé, R., et al. (2012). Large, deep water slope failures: implications for landslide-generated tsunamis. Geology, 40(10), 931–934.

    CrossRef  Google Scholar 

  • Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophysical Journal International, 200(1), 574–588.

    CrossRef  Google Scholar 

  • Lorito, S., Tiberti, M. M., Basili, R., Piatanesi, A., & Valensise, G. (2008). Earthquake generated tsunamis in the Mediterranean Sea: scenarios of potential threats to southern Italy. Journal of Geophysical Research (Solid Earth), 113(B1), 1978–2012.

    Google Scholar 

  • Luis, J. F. (2007). Mirone: a multi-purpose tool for exploring grid data. Computers & Geosciences, 33(1), 31–41.

    CrossRef  Google Scholar 

  • Luque, L., Lario, J., Civic, J., Silva, P. G., Zazo, C., Goy, J. L., et al. (2002). Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. Journal of Quaternary Science, 17(5–6), 623–631.

    CrossRef  Google Scholar 

  • Luque, L., Lario, J., Zazo, C., Goy, J. L., Dabrio, C. J., & Silva, P. G. (2001). Tsunami deposits as paleoseismic indicators: examples from the Spanish coast. Acta Geologica Hispanica, 36(3–4), 197–211.

    Google Scholar 

  • Maramai, A., Brizuela, B., & Graziani, L. (2014). The Euro-Mediterranean Tsunami Catalogue. Annals of Geophysics, 57(4), S0435.

    Google Scholar 

  • Matias, L. M., Cunha, T., Annunziato, A., Baptista, M. A., & Carrilho, F. (2013). Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Natural Hazards and Earth Systems Sciences, 13(1), 1–13.

    CrossRef  Google Scholar 

  • Matias, L. M., Ribeiro, A., Baptista, M. A., Zitellini, N., Cabral, J., Terrinha, P., et al. (2005). Comment on: Lisbon 1755: A case of triggered onshore rupture? By Vilanova S P, Nunes C F and Fonseca J F B D. Bulletin of the Seismological Society of America, 95(6), 2534–2538.

    CrossRef  Google Scholar 

  • Mercado, A., & McCann, W. (1998). Numerical Simulation of the 1918 Puerto Rico Tsunami. Natural Hazards, 18, 57–76.

    CrossRef  Google Scholar 

  • Miranda, J. M., Luis, J., Reis, C., Omira R., & Baptista, M. A. (2014). Validation of NSWING, a multi-core finite difference code for tsunami propagation and run-up. American Geophysical Union (AGU) Fall Meeting, San Francisco. Paper Number: S21A-4390. Session Number and Title: S21A, Natural Hazards.

    Google Scholar 

  • Moreira, V. S. (1968). Tsunamis Observados em Portugal. PUB GEO134. Lisboa Portugal: Serviço Meteorológico Nacional, p. 25 (in Portuguese).

    Google Scholar 

  • Myers, E. P., & Baptista, A. M. (2001). Analysis of factors influencing simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska Tsunamis. Natural Hazards, 23, 1–28.

    CrossRef  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Omira, R., Baptista, M. A., Leone, F., Matias, L., Mellas, S., Zourarah, B., et al. (2013). Performance of coastal sea-defense infrastructure at El Jadida (Morocco) against tsunami threat: lessons learned from the Japanese 11 March 2011 tsunami. Natural Hazards and Earth Systems Sciences, 13, 1779–1794.

    CrossRef  Google Scholar 

  • Omira, R., Baptista, M. A., & Matias, L. (2015). Probabilistic Tsunami Hazard in the Northeast Atlantic from Near- and Far-Field Tectonic Sources. Pure and Applied Geophysics, 172(3), 901–920.

    CrossRef  Google Scholar 

  • Omira, R., Baptista, M. A., Matias, L., Miranda, J. M., Catita, C., Carrilho, F., et al. (2009). Design of a sea-level tsunami detection network for the Gulf of Cadiz. Natural Hazards and Earth Systems Sciences, 9(4), 1327–1338.

    CrossRef  Google Scholar 

  • Omira, R., Baptista, M. A., & Miranda, J. M. (2011). Evaluating tsunami impact on the Gulf of Cadiz coast (northeast Atlantic). Pure and Applied Geophysics, 168(6–7), 1033–1043.

    CrossRef  Google Scholar 

  • Omira, R., Baptista, M. A., Miranda, J. M., Toto, E., Catita, C., & Catalao, J. (2010). Tsunami vulnerability assessment of Casablanca-Morocco using numerical modeling and GIS tools. Natural Hazards, 54(1), 75–95.

    CrossRef  Google Scholar 

  • Omira, R., Ramalho, I., Terrinha, P., Baptista, M. A., Batista, L., & Zitellini, N. (2016). Deep-water seamounts, a potential source of tsunami generated by landslides? The Hirondelle Seamount, NE Atlantic. Marine Geology, 379, 267–280.

    CrossRef  Google Scholar 

  • Power, W., Downes, G., & Stirling, M. (2007). Estimation of tsunami hazard in New Zealand due to South American earthquakes. Pure and Applied Geophysics, 164, 547–564.

    CrossRef  Google Scholar 

  • Renou, C., Lesne, O., Mangin, A., Rouffi, F., Atillah, A., El Hadani, D., et al. (2011). Tsunami hazard assessment in the coastal area of Rabat and Salé, Morocco. Natural Hazards Earth Systems Sciences, 11, 2181–2191.

    CrossRef  Google Scholar 

  • Saito, T., & Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877–888.

    CrossRef  Google Scholar 

  • Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., & Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research (Solid Earth), 117(B1), 1978–2012.

    Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23(8), 861–864.

    CrossRef  Google Scholar 

  • Tinti, S., & Armigliato, A. (2003). The use of scenarios to evaluate the tsunami impact in southern Italy. Marine Geology, 199(3), 221–243.

    CrossRef  Google Scholar 

  • Tinti, S., Armigliato, A., Pagnoni, G., & Zaniboni, F. (2005). Scenarios of giant tsunamis of tectonic origin in the Mediterranean. ISET Journal of Earthquake Technology, 42, 171–188.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society America, 84(4), 974–1002.

    Google Scholar 

  • Wronna, M., Omira, R., & Baptista, M. A. (2015). Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal. Natural Hazards Earth System Sciences, 15, 2557–2568.

    CrossRef  Google Scholar 

  • Zitellini, N., Chierici, F., Sartori, R., & Torelli, L. (1999). The tectonic source of the 1755 Lisbon Earthquake. Annali di Geofisica, 42(1), 49–55.

    Google Scholar 

  • Zitellini, N., Gracia, E., Matias, L., Terrinha, P., Abreu, M. A., DeAlteriis, G., et al. (2009). The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters, 280(1), 13–50.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Omira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Omira, R., Matias, L., Baptista, M.A. (2016). Developing an Event-Tree Probabilistic Tsunami Inundation Model for NE Atlantic Coasts: Application to a Case Study. In: Geist, E.L., Fritz, H.M., Rabinovich, A.B., Tanioka, Y. (eds) Global Tsunami Science: Past and Future, Volume I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55480-8_7

Download citation

Publish with us

Policies and ethics